Update: 2025.04.07
·
0 commits
to a304671dec4d5c413867f21e7e6e35a435179673
since this release
📈 Trending Up
Projects that have a higher project-quality score compared to the last update. There might be a variety of reasons, such as increased downloads or code activity.
- pymatviz (🥇23 · ⭐ 200 · 📈) - A toolkit for visualizations in materials informatics.
MIT
general-tool
probabilistic
- exmol (🥇22 · ⭐ 330 · 📈) - Explainer for black box models that predict molecule properties.
MIT
- TorchSim (🥉13 · ⭐ 140 · 🐣) - Torch-native, batchable, atomistic simulation.
MIT
HTC
UIP
ML-IAP
structure-optimization
- DeepErwin (🥉9 · ⭐ 54 · 📈) - DeepErwin is a python 3.8+ package that implements and optimizes JAX 2.x wave function models for numerical solutions..
Custom
📉 Trending Down
Projects that have a lower project-quality score compared to the last update. There might be a variety of reasons such as decreased downloads or code activity.
- FLARE (🥇18 · ⭐ 310 · 📉) - An open-source Python package for creating fast and accurate interatomic potentials.
MIT
C++
ML-IAP
- SpheriCart (🥇18 · ⭐ 83 · 📉) - Multi-language library for the calculation of spherical harmonics in Cartesian coordinates.
MIT
- gptchem (🥈12 · ⭐ 250 · 💀) - Use GPT-3 to solve chemistry problems.
MIT
- PiNN (🥈12 · ⭐ 110 · 📉) - A Python library for building atomic neural networks.
BSD-3
- BenchML (🥉11 · ⭐ 15 · 💀) - ML benchmarking and pipeling framework.
Apache-2
benchmarking
➕ Added Projects
Projects that were recently added to this best-of list.
- SMACT (🥇27 · ⭐ 110 · ➕) - Python package to aid materials design and informatics.
MIT
HTC
structure-prediction
electrostatics
- MACE-FOUNDATION models (🥉19 · ⭐ 640 · ➕) - MACE-MP models.
MIT
ML-IAP
pretrained
rep-learn
MD
- AtomAI (🥈19 · ⭐ 210 · 💀) - Deep and Machine Learning for Microscopy.
MIT
computer-vision
USL
experimental-data
- ElementEmbeddings (🥈16 · ⭐ 41 · ➕) - Python package to interact with high-dimensional representations of the chemical elements.
MIT
XAI
USL
viz
- pySIPFENN (🥈16 · ⭐ 22 · ➕) - Python python toolset for Structure-Informed Property and Feature Engineering with Neural Networks. It offers unique..
LGPL-3.0
material-defect
Disordered Materials
pretrained
transfer-learning
- ChemML (🥈15 · ⭐ 160 · ➕) - ChemML is a machine learning and informatics program suite for the chemical and materials sciences.
BSD-3
cheminformatics
active-learning
workflows
- SLICES and MatterGPT (🥇15 · ⭐ 100 · ➕) - SLICES: An Invertible, Invariant, and String-based Crystal Representation [2023, Nature Communications] MatterGPT,..
LGPL-2.1
rep-eng
language-models
transformer
materials-discovery
structure-prediction
- xtal2png (🥈14 · ⭐ 37 · 💀) - Encode/decode a crystal structure to/from a grayscale PNG image for direct use with image-based machine learning..
MIT
computer-vision
- Bgolearn (🥈13 · ⭐ 91 · ➕) - [Materials & Design 2024] A Bayesian global optimization package for material design Adaptive Learning | Active..
MIT
materials-discovery
probabilistic
- mat_discover (🥈13 · ⭐ 41 · 💤) - A materials discovery algorithm geared towards exploring high-performance candidates in new chemical spaces.
MIT
materials-discovery
rep-eng
HTC
- Awesome-Scientific-Language-Models (🥈11 · ⭐ 560 · ➕) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery (EMNLP24).
MIT
language-models
general-ml
pretrained
multimodal
- nablaDFT (🥈11 · ⭐ 200 · ➕) - nablaDFT: Large-Scale Conformational Energy and Hamiltonian Prediction benchmark and dataset.
MIT
ML-DFT
ML-WFT
drug-discovery
ML-IAP
benchmarking
- PDynA (🥉11 · ⭐ 41 · ➕) - Python package to analyse the structural dynamics of perovskites.
MIT
MD
- pumml (🥈11 · ⭐ 37 · 💀) - Positive and Unlabeled Materials Machine Learning (pumml) is a code that uses semi-supervised machine learning to..
MIT
materials-discovery
- MPDS API (🥈11 · ⭐ 27 · ➕) - Tutorials, notebooks, issue tracker, and website on the MPDS API: the data retrieval interface for the Materials..
CC-BY-4.0
community-resource
literature-data
- MLforMaterials (🥉7 · ⭐ 79 · ➕) - Online resource for a practical course in machine learning for materials research at Imperial College London..
MIT
community-resource
general-ml
rep-eng
materials-discovery
- molecular-vae (🥉7 · ⭐ 65 · 💀) - Pytorch implementation of the paper Automatic Chemical Design Using a Data-Driven Continuous Representation of..
MIT
rep-learn
cheminformatics
single-paper
- PolyGNN (🥉7 · ⭐ 38 · ➕) - polyGNN is a Python library to automate ML model training for polymer informatics.
MIT
soft-matter
multitask
single-paper
- BPNET (🥉7 · ⭐ 2 · 🐣) - Behler-Parrinello type neural networks in Fortran2008.
MIT
rep-eng
Fortran
- Geom3D (🥉6 · ⭐ 120 · 💀) - Geom3D: Geometric Modeling on 3D Structures, NeurIPS 2023.
MIT
benchmarking
single-paper
- LLM4Chem (🥉6 · ⭐ 81 · 💤) - Official code repo for the paper LlaSMol: Advancing Large Language Models for Chemistry with a Large-Scale,..
MIT
cheminformatics
datasets
- Graph-Aware-Transformers (🥉6 · ⭐ 56 · 🐣) - Graph-Aware Attention for Adaptive Dynamics in Transformers.
Apache-2
transformer
graph-data
pretrained
single-paper
- ffonons (🥉6 · ⭐ 18 · ➕) - Phonons from ML force fields.
MIT
benchmarking
density-of-states
- polyVERSE (🥉6 · ⭐ 17 · ➕) - polyVERSE is a comprehensive repository of informatics-ready datasets curated by the Ramprasad Group.
Custom
soft-matter
- Crystalformer (🥉5 · ⭐ 17 · ➕) - The official code respository for Crystalformer: Infinitely Connected Attention for Periodic Structure Encoding (ICLR..
MIT
transformer
single-paper
- thermo (🥇5 · ⭐ 16 · 💤) - Data-driven risk-conscious thermoelectric materials discovery.
MIT
materials-discovery
experimental-data
active-learning
transport-phenomena
- MUSE (🥉5 · ⭐ 4 · ➕) - A python package for fast building amorphous solids and liquid mixtures from @materialsproject computed structures and..
MIT
ML-IAP
Disordered Materials
- 3D-EMGP (🥉4 · ⭐ 34 · 💤) - [AAAI 2023] The implementation for the paper Energy-Motivated Equivariant Pretraining for 3D Molecular Graphs.
MIT
pretrained
rep-learn
single-paper
- Crystalframer (🥉4 · ⭐ 5 · 🐣) - The official code respository for Rethinking the role of frames for SE(3)-invariant crystal structure modeling (ICLR..
MIT
transformer
single-paper