Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Function call syntax support #206

Merged
merged 3 commits into from
Jul 21, 2018
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 15 additions & 13 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,8 @@ from the Julia REPL.

## General usage

Note: the current version of `Interpolations` supports interpolation evaluation using index calls `[]`, but this feature will be deprecated in future. We highly recommend function calls with `()` as follows.

Given an `AbstractArray` `A`, construct an "interpolation object" `itp` as
```jl
itp = interpolate(A, options...)
Expand All @@ -49,7 +51,7 @@ samples in `A` are equally-spaced.

To evaluate the interpolation at position `(x, y, ...)`, simply do
```jl
v = itp[x, y, ...]
v = itp(x, y, ...)
```

Some interpolation objects support computation of the gradient, which
Expand Down Expand Up @@ -89,14 +91,14 @@ Julia's iterator objects, e.g.,
```jl
function ongrid!(dest, itp)
for I in CartesianRange(size(itp))
dest[I] = itp[I]
dest[I] = itp(I)
end
end
```
would store the on-grid value at each grid point of `itp` in the output `dest`.
Finally, courtesy of Julia's indexing rules, you can also use
```jl
fine = itp[linspace(1,10,1001), linspace(1,15,201)]
fine = itp(linspace(1,10,1001), linspace(1,15,201))
```


Expand All @@ -114,19 +116,19 @@ Some examples:
```jl
# Nearest-neighbor interpolation
itp = interpolate(a, BSpline(Constant()), OnCell())
v = itp[5.4] # returns a[5]
v = itp(5.4) # returns a[5]

# (Multi)linear interpolation
itp = interpolate(A, BSpline(Linear()), OnGrid())
v = itp[3.2, 4.1] # returns 0.9*(0.8*A[3,4]+0.2*A[4,4]) + 0.1*(0.8*A[3,5]+0.2*A[4,5])
v = itp(3.2, 4.1) # returns 0.9*(0.8*A[3,4]+0.2*A[4,4]) + 0.1*(0.8*A[3,5]+0.2*A[4,5])

# Quadratic interpolation with reflecting boundary conditions
# Quadratic is the lowest order that has continuous gradient
itp = interpolate(A, BSpline(Quadratic(Reflect())), OnCell())

# Linear interpolation in the first dimension, and no interpolation (just lookup) in the second
itp = interpolate(A, (BSpline(Linear()), NoInterp()), OnGrid())
v = itp[3.65, 5] # returns 0.35*A[3,5] + 0.65*A[4,5]
v = itp(3.65, 5) # returns 0.35*A[3,5] + 0.65*A[4,5]
```
There are more options available, for example:
```jl
Expand All @@ -145,8 +147,8 @@ A_x = 1.:2.:40.
A = [log(x) for x in A_x]
itp = interpolate(A, BSpline(Cubic(Line())), OnGrid())
sitp = scale(itp, A_x)
sitp[3.] # exactly log(3.)
sitp[3.5] # approximately log(3.5)
sitp(3.) # exactly log(3.)
sitp(3.5) # approximately log(3.5)
```

For multidimensional uniformly spaced grids
Expand All @@ -157,8 +159,8 @@ f(x1, x2) = log(x1+x2)
A = [f(x1,x2) for x1 in A_x1, x2 in A_x2]
itp = interpolate(A, BSpline(Cubic(Line())), OnGrid())
sitp = scale(itp, A_x1, A_x2)
sitp[5., 10.] # exactly log(5 + 10)
sitp[5.6, 7.1] # approximately log(5.6 + 7.1)
sitp(5., 10.) # exactly log(5 + 10)
sitp(5.6, 7.1) # approximately log(5.6 + 7.1)
```
### Gridded interpolation

Expand All @@ -173,7 +175,7 @@ A = rand(20)
A_x = collect(1.0:2.0:40.0)
knots = (A_x,)
itp = interpolate(knots, A, Gridded(Linear()))
itp[2.0]
itp(2.0)
```

The spacing between adjacent samples need not be constant, you can use the syntax
Expand All @@ -188,7 +190,7 @@ For example:
A = rand(8,20)
knots = ([x^2 for x = 1:8], [0.2y for y = 1:20])
itp = interpolate(knots, A, Gridded(Linear()))
itp[4,1.2] # approximately A[2,6]
itp(4,1.2) # approximately A[2,6]
```
One may also mix modes, by specifying a mode vector in the form of an explicit tuple:
```jl
Expand Down Expand Up @@ -225,7 +227,7 @@ A = hcat(x,y)
itp = scale(interpolate(A, (BSpline(Cubic(Natural())), NoInterp()), OnGrid()), t, 1:2)

tfine = 0:.01:1
xs, ys = [itp[t,1] for t in tfine], [itp[t,2] for t in tfine]
xs, ys = [itp(t,1) for t in tfine], [itp(t,2) for t in tfine]
```

We can then plot the spline with:
Expand Down
5 changes: 5 additions & 0 deletions src/b-splines/indexing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,11 @@ end
getindex_impl(itp)
end

function (itp::BSplineInterpolation{T,N,TCoefs,IT,GT,pad})(args...) where {T,N,TCoefs,IT,GT,pad}
Copy link

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

sorry if I'm being dense, but do you really need to specify all the parameters? wouldn't

(itp::TheITPType)(args...) = itp[args...]

work?

# support function calls
itp[args...]
end

function gradient_impl(itp::Type{BSplineInterpolation{T,N,TCoefs,IT,GT,Pad}}) where {T,N,TCoefs,IT<:DimSpec{BSpline},GT<:DimSpec{GridType},Pad}
meta = Expr(:meta, :inline)
# For each component of the gradient, alternately calculate
Expand Down
5 changes: 5 additions & 0 deletions src/extrapolation/extrapolation.jl
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,11 @@ end
getindex_impl(etp, xs...)
end

function (etp::Extrapolation{T,N,ITPT,IT,GT,ET})(args...) where {T,N,ITPT,IT,GT,ET}
# support function calls
etp[args...]
end

checkbounds(::AbstractExtrapolation,I...) = nothing


Expand Down
5 changes: 5 additions & 0 deletions src/extrapolation/filled.jl
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,11 @@ extrapolate(itp::AbstractInterpolation{T,N,IT,GT}, fillvalue) where {T,N,IT,GT}
convert(Tret, fitp.fillvalue)
end

function (fitp::FilledExtrapolation{T,N,ITP,IT,GT,FT})(args...) where {T,N,ITP,IT,GT,FT}
# support function calls
fitp[args...]
end

@inline Base.checkbounds(::Type{Bool}, A::FilledExtrapolation, I...) = _checkbounds(A, 1, indices(A), I)
@inline _checkbounds(A, d::Int, IA::TT1, I::TT2) where {TT1,TT2} =
(I[1] >= lbound(A, d, IA[1])) & (I[1] <= ubound(A, d, IA[1])) & _checkbounds(A, d+1, Base.tail(IA), Base.tail(I))
Expand Down
5 changes: 5 additions & 0 deletions src/gridded/indexing.jl
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,11 @@ end
:(getindex(itp, $(args...)))
end

function (itp::GriddedInterpolation{T,N,TCoefs,IT,K,pad})(args...) where {T,N,TCoefs,IT,K,pad}
# support function calls
itp[args...]
end

# Indexing with vector inputs. Here, it pays to pre-process the input indexes,
# because N*n is much smaller than n^N.
# TODO: special-case N=1, because there is no reason to separately cache the indexes.
Expand Down
4 changes: 4 additions & 0 deletions src/scaling/scaling.jl
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,10 @@ end

getindex(sitp::ScaledInterpolation{T,1}, x::Number, y::Int) where {T} = y == 1 ? sitp[x] : throw(BoundsError())

function (sitp::ScaledInterpolation{T,N,ITPT,IT})(args...) where {T,N,ITPT,IT<:DimSpec}
sitp[args...]
end

size(sitp::ScaledInterpolation, d) = size(sitp.itp, d)
lbound(sitp::ScaledInterpolation{T,N,ITPT,IT,OnGrid}, d) where {T,N,ITPT,IT} = 1 <= d <= N ? sitp.ranges[d][1] : throw(BoundsError())
lbound(sitp::ScaledInterpolation{T,N,ITPT,IT,OnCell}, d) where {T,N,ITPT,IT} = 1 <= d <= N ? sitp.ranges[d][1] - boundstep(sitp.ranges[d]) : throw(BoundsError())
Expand Down
24 changes: 24 additions & 0 deletions test/b-splines/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
module ExtrapFunctionCallSyntax

using Base.Test, Interpolations, DualNumbers

# Test if b-spline interpolation by function syntax yields identical results
f(x) = sin((x-3)*2pi/9 - 1)
xmax = 10
A = Float64[f(x) for x in 1:xmax]
itpg = interpolate(A, BSpline(Linear()), OnGrid())
schemes = (Flat,Line,Free)

for T in (Cubic, Quadratic), GC in (OnGrid, OnCell)
for etp in map(S -> @inferred(interpolate(A, BSpline(T(S())), GC())), schemes),
x in linspace(1,xmax,100)
@test (getindex(etp, x)) == etp(x)
end
end

for T in (Constant, Linear), GC in (OnGrid, OnCell), x in linspace(1,xmax,100)
etp = interpolate(A, BSpline(T()), GC())
@test (getindex(etp, x)) == etp(x)
end

end
1 change: 1 addition & 0 deletions test/b-splines/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,5 +7,6 @@ include("cubic.jl")
include("mixed.jl")
include("multivalued.jl")
include("non1.jl")
include("function-call-syntax.jl")

end
104 changes: 104 additions & 0 deletions test/extrapolation/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
module ExtrapFunctionCallSyntax

using Base.Test, Interpolations, DualNumbers

# Test if extrapolation by function syntax yields identical results
f(x) = sin((x-3)*2pi/9 - 1)
xmax = 10
A = Float64[f(x) for x in 1:xmax]
itpg = interpolate(A, BSpline(Linear()), OnGrid())

schemes = (
Flat,
Linear,
Reflect,
Periodic
)

for etp in map(E -> @inferred(extrapolate(itpg, E())), schemes),
x in [
# In-bounds evaluation
3.4, 3, dual(3.1),
# Out-of-bounds evaluation
-3.4, -3, dual(-3,1),
13.4, 13, dual(13,1)
]
@test (getindex(etp, x)) == etp(x)
end

etpg = extrapolate(itpg, Flat())
@test typeof(etpg) <: AbstractExtrapolation

@test etpg(-3) == etpg(-4.5) == etpg(0.9) == etpg(1.0) == A[1]
@test etpg(10.1) == etpg(11) == etpg(148.298452) == A[end]

etpf = @inferred(extrapolate(itpg, NaN))
@test typeof(etpf) <: Interpolations.FilledExtrapolation
@test parent(etpf) === itpg

@test @inferred(size(etpf)) == (xmax,)
@test isnan(@inferred(etpf(-2.5)))
@test isnan(etpf(0.999))
@test @inferred(etpf(1)) ≈ f(1)
@test etpf(10) ≈ f(10)
@test isnan(@inferred(etpf(10.001)))

@test etpf(2.5,1) == etpf(2.5) # for show method
@test_throws BoundsError etpf(2.5,2)
@test_throws BoundsError etpf(2.5,2,1)

x = @inferred(etpf(dual(-2.5,1)))
@test isa(x, Dual)

etpl = extrapolate(itpg, Linear())
k_lo = A[2] - A[1]
x_lo = -3.2
@test etpl(x_lo) ≈ A[1] + k_lo * (x_lo - 1)
k_hi = A[end] - A[end-1]
x_hi = xmax + 5.7
@test etpl(x_hi) ≈ A[end] + k_hi * (x_hi - xmax)

xmax, ymax = 8,8
g(x, y) = (x^2 + 3x - 8) * (-2y^2 + y + 1)

itp2g = interpolate(Float64[g(x,y) for x in 1:xmax, y in 1:ymax], (BSpline(Quadratic(Free())), BSpline(Linear())), OnGrid())
etp2g = extrapolate(itp2g, (Linear(), Flat()))

@test @inferred(etp2g(-0.5,4)) ≈ itp2g(1,4) - 1.5 * epsilon(etp2g(dual(1,1),4))
@test @inferred(etp2g(5,100)) ≈ itp2g(5,ymax)

etp2ud = extrapolate(itp2g, ((Linear(), Flat()), Flat()))
@test @inferred(etp2ud(-0.5,4)) ≈ itp2g(1,4) - 1.5 * epsilon(etp2g(dual(1,1),4))
@test @inferred(etp2ud(5, -4)) == etp2ud(5,1)
@test @inferred(etp2ud(100, 4)) == etp2ud(8,4)
@test @inferred(etp2ud(-.5, 100)) == itp2g(1,8) - 1.5 * epsilon(etp2g(dual(1,1),8))

etp2ll = extrapolate(itp2g, Linear())
@test @inferred(etp2ll(-0.5,100)) ≈ (itp2g(1,8) - 1.5 * epsilon(etp2ll(dual(1,1),8))) + (100 - 8) * epsilon(etp2ll(1,dual(8,1)))

# Allow element types that don't support conversion to Int (#87):
etp87g = extrapolate(interpolate([1.0im, 2.0im, 3.0im], BSpline(Linear()), OnGrid()), 0.0im)
@test @inferred(etp87g(1)) == 1.0im
@test @inferred(etp87g(1.5)) == 1.5im
@test @inferred(etp87g(0.75)) == 0.0im
@test @inferred(etp87g(3.25)) == 0.0im

etp87c = extrapolate(interpolate([1.0im, 2.0im, 3.0im], BSpline(Linear()), OnCell()), 0.0im)
@test @inferred(etp87c(1)) == 1.0im
@test @inferred(etp87c(1.5)) == 1.5im
@test @inferred(etp87c(0.75)) == 0.75im
@test @inferred(etp87c(3.25)) == 3.25im
@test @inferred(etp87g(0)) == 0.0im
@test @inferred(etp87g(3.7)) == 0.0im

# Make sure it works with Gridded too
etp100g = extrapolate(interpolate(([10;20],),[100;110], Gridded(Linear())), Flat())
@test @inferred(etp100g(5)) == 100
@test @inferred(etp100g(15)) == 105
@test @inferred(etp100g(25)) == 110
# issue #178
a = randn(10,10) + im*rand(10,10)
etp = @inferred(extrapolate(interpolate((1:10, 1:10), a, Gridded(Linear())), 0.0))
@test @inferred(etp(-1,0)) === 0.0+0.0im

end
1 change: 1 addition & 0 deletions test/extrapolation/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -103,3 +103,4 @@ end

include("type-stability.jl")
include("non1.jl")
include("function-call-syntax.jl")
74 changes: 74 additions & 0 deletions test/gridded/function-call-syntax.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,74 @@
module GriddedFunctionCallSyntax

using Interpolations, Base.Test

for D in (Constant, Linear), G in (OnCell, OnGrid)
## 1D
a = rand(5)
knots = (collect(linspace(1,length(a),length(a))),)
itp = @inferred(interpolate(knots, a, Gridded(D())))
@inferred(getindex(itp, 2))
@inferred(getindex(itp, CartesianIndex((2,))))
for i = 2:length(a)-1
@test itp(i) ≈ a[i]
@test itp(CartesianIndex((i,))) ≈ a[i]
end
@inferred(getindex(itp, knots...))
@test itp[knots...] ≈ a
# compare scalar indexing and vector indexing
x = knots[1]+0.1
v = itp(x)
for i = 1:length(x)
@test v[i] ≈ itp(x[i])
end
# check the fallback vector indexing
x = [2.3,2.2] # non-increasing order
v = itp[x]
for i = 1:length(x)
@test v[i] ≈ itp(x[i])
end
# compare against BSpline
itpb = @inferred(interpolate(a, BSpline(D()), G()))
for x in linspace(1.1,4.9,101)
@test itp(x) ≈ itpb(x)
end

## 2D
A = rand(6,5)
knots = (collect(linspace(1,size(A,1),size(A,1))),collect(linspace(1,size(A,2),size(A,2))))
itp = @inferred(interpolate(knots, A, Gridded(D())))
@test parent(itp) === A
@inferred(getindex(itp, 2, 2))
@inferred(getindex(itp, CartesianIndex((2,2))))
for j = 2:size(A,2)-1, i = 2:size(A,1)-1
@test itp(i,j) ≈ A[i,j]
@test itp(CartesianIndex((i,j))) ≈ A[i,j]
end
@test itp[knots...] ≈ A
@inferred(getindex(itp, knots...))
# compare scalar indexing and vector indexing
x, y = knots[1]+0.1, knots[2]+0.6
v = itp(x,y)
for j = 1:length(y), i = 1:length(x)
@test v[i,j] ≈ itp(x[i],y[j])
end
# check the fallback vector indexing
x = [2.3,2.2] # non-increasing order
y = [3.5,2.8]
v = itp[x,y]
for j = 1:length(y), i = 1:length(x)
@test v[i,j] ≈ itp(x[i],y[j])
end
# compare against BSpline
itpb = @inferred(interpolate(A, BSpline(D()), G()))
for y in linspace(1.1,5.9,101), x in linspace(1.1,4.9,101)
@test itp(x,y) ≈ itpb(x,y)
end

A = rand(8,20)
knots = ([x^2 for x = 1:8], [0.2y for y = 1:20])
itp = interpolate(knots, A, Gridded(D()))
@test itp(4,1.2) ≈ A[2,6]
end

end
3 changes: 2 additions & 1 deletion test/gridded/runtests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -2,5 +2,6 @@ module GriddedTests

include("gridded.jl")
include("mixed.jl")
include("function-call-syntax.jl")

end
end
Loading