Skip to content

Kartikeya-trivedi/Kolamvision

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

21 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐ŸŽจ Kolam Learning Platform

Preserving Cultural Heritage Through AI Technology

Python FastAPI React PostgreSQL Docker

License Build Status Version


๐Ÿ“– Table of Contents


๐ŸŽฏ Overview

An AI-powered platform for learning, exploring, and celebrating the traditional Indian art of Kolam (also known as muggu, rangoli, and rangavalli). This innovative platform seamlessly blends cultural heritage with cutting-edge technology to provide immersive, interactive learning experiences.

๐ŸŒŸ Mission: To preserve and promote traditional Indian art forms through modern AI technology while making cultural learning accessible, engaging, and globally available.

๐ŸŽจ What is Kolam?

Kolam is a traditional South Indian art form where intricate patterns are drawn using rice flour, chalk, or colored powders. These beautiful geometric designs are typically created at the entrance of homes and temples, symbolizing prosperity, protection, and welcome to visitors.

โœจ Features

๐Ÿง  AI-Powered ๐Ÿ“š Interactive Learning ๐ŸŒ Community ๐Ÿ”ง Technical
Pattern Detection Gamified Quizzes Pattern Sharing Real-time Processing
AI Generation Progress Tracking Collaborative Learning Offline Capability
Smart Recognition Cultural Context Community Gallery Cross-platform
LLM Integration Adaptive Difficulty Cultural Exchange Scalable Architecture

๐Ÿง  AI-Powered Capabilities

๐Ÿ” Advanced Pattern Recognition
  • Smart Detection: Upload images and get instant AI-powered analysis of Kolam patterns
  • Cultural Classification: Identify traditional patterns and their regional variations
  • Accuracy Scoring: Get detailed feedback on pattern accuracy and completeness
  • Pattern Similarity: Find similar patterns in the database with confidence scores
๐ŸŽจ Intelligent Generation
  • Mathematical Algorithms: Create new Kolam designs using geometric principles
  • AI-Assisted Design: Generate patterns based on user preferences and skill level
  • Style Transfer: Apply traditional styles to modern interpretations
  • Custom Variations: Create personalized versions of classical patterns
๐Ÿค– AI-Powered Learning Assistant
  • Interactive Hints: Get contextual help when stuck on patterns
  • Cultural Insights: Learn about symbolism and meaning through AI explanations
  • Personalized Feedback: Receive tailored suggestions for improvement
  • Local LLM Integration: Powered by Ollama for privacy-focused AI interactions

๐Ÿ“š Interactive Learning Experience

๐ŸŽฎ Gamified Education
  • Duolingo-style Progression: Step-by-step learning with clear milestones
  • Achievement System: Unlock badges and rewards for completing challenges
  • Streak Tracking: Maintain daily practice streaks for consistent learning
  • Leaderboards: Compete with friends and community members
๐Ÿ“ˆ Adaptive Learning Path
  • Skill Assessment: Initial evaluation to determine starting level
  • Dynamic Difficulty: Automatic adjustment based on performance
  • Personalized Curriculum: Tailored learning path for each user
  • Progress Analytics: Detailed insights into learning patterns and improvements

๐ŸŒ Community & Collaboration

๐Ÿค Social Learning
  • Pattern Gallery: Showcase and discover community creations
  • Collaborative Projects: Work together on complex multi-part designs
  • Mentorship Program: Connect beginners with experienced practitioners
  • Cultural Ambassadors: Learn from traditional artists and experts

๐Ÿ”ง Technical Excellence

โšก Performance & Reliability
  • Sub-second Analysis: Lightning-fast pattern recognition and feedback
  • 99.9% Uptime: Robust infrastructure with automatic failover
  • Offline Mode: Continue learning without internet connectivity
  • Cross-platform: Seamless experience across web, mobile, and desktop

๐Ÿ” Back to Top

๏ฟฝ๏ธ Tech Stack

Backend Technologies

Python FastAPI SQLAlchemy Alembic

Frontend Technologies

React Vite Axios Chart.js

AI/ML Stack

TensorFlow PyTorch OpenCV Ollama

Database & Storage

PostgreSQL SQLite OpenSearch

DevOps & Monitoring

Docker Prometheus Grafana

๐Ÿ“Š Detailed Technology Breakdown
Category Technology Version Purpose
Web Framework FastAPI 0.104+ High-performance async API framework
Frontend Framework React 19.1+ Modern UI library with hooks
Build Tool Vite 7.1+ Fast development and build tool
Database ORM SQLAlchemy 2.0+ Python SQL toolkit and ORM
Migration Tool Alembic 1.12+ Database migration management
AI Framework TensorFlow 2.15+ Deep learning and pattern recognition
Computer Vision OpenCV 4.8+ Image processing and analysis
LLM Integration Ollama 0.1+ Local language model inference
Search Engine OpenSearch 2.11+ Vector search and full-text search
Monitoring Prometheus + Grafana Latest Metrics collection and visualization
Authentication JWT + OAuth2 - Secure user authentication
Validation Pydantic 2.5+ Data validation and serialization

๐Ÿ” Back to Top

๐Ÿ—๏ธ Architecture

graph TB
    subgraph "Frontend Layer"
        UI[React Frontend]
        Mobile[Mobile App]
    end
    
    subgraph "API Gateway"
        FastAPI[FastAPI Server]
        Auth[Authentication]
        Rate[Rate Limiting]
    end
    
    subgraph "Core Services"
        Kolam[Kolam Service]
        Learning[Learning Service]
        User[User Service]
        AI[AI Service]
    end
    
    subgraph "AI/ML Pipeline"
        Detection[Pattern Detection]
        Generation[Pattern Generation]
        Ollama[LLM Service]
        CV[Computer Vision]
    end
    
    subgraph "Data Layer"
        Postgres[(PostgreSQL)]
        Search[(OpenSearch)]
        Files[(File Storage)]
        Cache[(Redis Cache)]
    end
    
    subgraph "Infrastructure"
        Docker[Docker Containers]
        Monitor[Monitoring]
        Logs[Logging]
    end
    
    UI --> FastAPI
    Mobile --> FastAPI
    FastAPI --> Auth
    FastAPI --> Rate
    FastAPI --> Kolam
    FastAPI --> Learning
    FastAPI --> User
    
    Kolam --> AI
    Learning --> AI
    AI --> Detection
    AI --> Generation
    AI --> Ollama
    AI --> CV
    
    Kolam --> Postgres
    Learning --> Postgres
    User --> Postgres
    AI --> Search
    AI --> Files
    FastAPI --> Cache
    
    FastAPI --> Monitor
    FastAPI --> Logs
Loading

๐Ÿ”„ System Flow

๐Ÿ“ธ Image Processing Workflow
User Upload โ†’ Image Validation โ†’ AI Detection โ†’ Pattern Analysis โ†’ 
Cultural Classification โ†’ Feedback Generation โ†’ Results Display
  1. Image Input: User uploads Kolam image
  2. Preprocessing: Image normalization and enhancement
  3. AI Detection: EfficientNet-B4 model analyzes patterns
  4. Pattern Matching: Compare against traditional pattern database
  5. Cultural Context: LLM provides cultural insights and explanations
  6. Results: Comprehensive feedback with suggestions
๐ŸŽ“ Learning Path Engine
Skill Assessment โ†’ Personalized Curriculum โ†’ Progressive Challenges โ†’ 
Performance Analytics โ†’ Adaptive Difficulty โ†’ Mastery Tracking
  1. Initial Assessment: Evaluate user's current skill level
  2. Path Generation: Create personalized learning trajectory
  3. Content Delivery: Serve appropriate challenges and tutorials
  4. Progress Monitoring: Track completion rates and accuracy
  5. Dynamic Adjustment: Modify difficulty based on performance
  6. Achievement Unlocking: Reward progress with badges and certificates

๐Ÿ—ƒ๏ธ Database Schema Overview

๐Ÿ“Š Core Data Models
-- Users and Authentication
users (id, email, username, created_at, profile_data)
user_sessions (id, user_id, token, expires_at)

-- Kolam Patterns and Analysis
kolam_patterns (id, name, region, difficulty, cultural_significance)
user_uploads (id, user_id, image_path, analysis_results, created_at)
pattern_detections (id, upload_id, pattern_id, confidence_score)

-- Learning and Progress
learning_paths (id, user_id, current_level, progress_percentage)
quiz_attempts (id, user_id, quiz_id, score, completed_at)
achievements (id, user_id, badge_type, earned_at)

-- Community and Social
shared_patterns (id, user_id, pattern_id, public, likes_count)
comments (id, pattern_id, user_id, content, created_at)

๐Ÿ” Back to Top

  • Python 3.11 or higher
  • uv package manager
  • Git

Option 1: SQLite (Recommended for Development)

No database setup required! The application works out of the box with SQLite.

# Clone the repository
git clone https://github.com/your-org/kolam-learning-platform.git
cd kolam-learning-platform

# Install dependencies
uv sync

# Start the development server
.\dev.bat dev  # Windows
# or
make dev       # Linux/macOS

That's it! ๐ŸŽ‰ Your server will be running at http://localhost:8000

Option 2: Full Stack with PostgreSQL

For production or advanced features:

# Start all services with Docker
.\dev.bat docker-up  # Windows
# or
docker-compose up -d  # Linux/macOS

# Run database migrations
.\dev.bat migrate-up

# Start the development server
.\dev.bat dev

๐Ÿ“– API Documentation

Once the server is running, access the interactive API documentation:

๏ฟฝ Project Structure

๐ŸŽจ kolam-learning-platform/
โ”œโ”€โ”€ ๐Ÿ“ src/                          # ๐Ÿ Backend Source Code
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ api/                      # ๐ŸŒ FastAPI Routes & Endpoints
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ” auth.py               # Authentication & Authorization
โ”‚   โ”‚   โ”œโ”€โ”€ ๐ŸŽจ kolam.py              # Kolam Detection & Analysis
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“š learning.py           # Learning Platform Features
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ‘ค users.py              # User Management
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ core/                     # โš™๏ธ Core Configuration
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ”ง config.py             # App Settings & Environment
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ—„๏ธ database.py           # Database Configuration
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ logging.py            # Structured Logging Setup
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ”’ security.py           # Security Utilities
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ services/                 # ๏ฟฝ๐Ÿ› ๏ธ Business Logic Layer
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ ai/                   # ๐Ÿค– AI/ML Services
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ” detection_service.py    # Pattern Recognition
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ ๐ŸŽจ generation_service.py   # Pattern Generation
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿง  ollama_service.py       # LLM Integration
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ” auth_service.py       # Authentication Logic
โ”‚   โ”‚   โ”œโ”€โ”€ ๐ŸŽจ kolam_service.py      # Kolam Business Logic
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“š learning_service.py   # Learning Platform Logic
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ‘ค user_service.py       # User Management Logic
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ schemas/                  # ๐Ÿ“‹ Pydantic Models
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ search/                   # ๐Ÿ” Search Integration
โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ”Œ client.py             # OpenSearch Client
โ”‚   โ””โ”€โ”€ ๐Ÿš€ main.py                   # Application Entry Point
โ”œโ”€โ”€ ๐Ÿ“ frontend/                     # โš›๏ธ React Frontend
โ”‚   โ””โ”€โ”€ ๐Ÿ“ SIH-F-main/               # ๐ŸŽจ Main Frontend App
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ src/
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“ components/       # ๐Ÿงฉ React Components
โ”‚       โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ  home.jsx      # Landing Page
โ”‚       โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ” recognize.jsx # Pattern Recognition
โ”‚       โ”‚   โ”‚   โ”œโ”€โ”€ ๐ŸŽจ AiRecreate.jsx # AI Generation
โ”‚       โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“š knowledge.jsx # Learning Hub
โ”‚       โ”‚   โ”‚   โ”œโ”€โ”€ ๐ŸŽฏ quiz.jsx      # Interactive Quizzes
โ”‚       โ”‚   โ”‚   โ””โ”€โ”€ ๐Ÿ“Š analysis.jsx  # Analytics Dashboard
โ”‚       โ”‚   โ”œโ”€โ”€ ๐Ÿ“ services/         # ๐ŸŒ API Integration
โ”‚       โ”‚   โ””โ”€โ”€ ๐Ÿ“ data/             # ๐Ÿ“Š Static Data
โ”‚       โ”œโ”€โ”€ ๐Ÿ“ฆ package.json          # Dependencies & Scripts
โ”‚       โ””โ”€โ”€ โšก vite.config.js        # Build Configuration
โ”œโ”€โ”€ ๐Ÿ“ Finetuning/                   # ๐Ÿง  ML Model Training
โ”‚   โ”œโ”€โ”€ ๐Ÿ”ฌ finetune.py               # Model Fine-tuning Script
โ”‚   โ”œโ”€โ”€ ๐Ÿ“Š graph.py                  # Training Visualization
โ”‚   โ””โ”€โ”€ ๐Ÿค– kolam_efficientnet_b4.pth # Trained Model Weights
โ”œโ”€โ”€ ๐Ÿ“ tests/                        # ๐Ÿงช Test Suite
โ”‚   โ”œโ”€โ”€ ๐ŸŒ test_api_endpoints.py     # API Integration Tests
โ”‚   โ”œโ”€โ”€ ๐Ÿ” test_kolam_detection.py   # AI Detection Tests
โ”‚   โ””โ”€โ”€ ๐ŸŽจ test_kolam_generation.py  # Generation Tests
โ”œโ”€โ”€ ๐Ÿ“ monitoring/                   # ๐Ÿ“Š Observability Stack
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ˆ prometheus.yml            # Metrics Configuration
โ”‚   โ””โ”€โ”€ ๐Ÿ“ grafana/                  # Dashboard Definitions
โ”œโ”€โ”€ ๐Ÿ“ scripts/                      # ๐Ÿ› ๏ธ Utility Scripts
โ”‚   โ”œโ”€โ”€ ๐Ÿ” inference.py              # Model Inference Script
โ”‚   โ”œโ”€โ”€ ๐Ÿ—„๏ธ init-db.sql              # Database Initialization
โ”‚   โ””โ”€โ”€ ๐Ÿง  KNOWLEDGE.py              # Knowledge Base Setup
โ”œโ”€โ”€ ๐Ÿ“ alembic/                      # ๐Ÿ”„ Database Migrations
โ”‚   โ”œโ”€โ”€ โš™๏ธ env.py                    # Migration Environment
โ”‚   โ””โ”€โ”€ ๐Ÿ“ versions/                 # Migration Files
โ”œโ”€โ”€ ๐Ÿณ docker-compose.yml            # Multi-Service Orchestration
โ”œโ”€โ”€ ๐Ÿณ Dockerfile                    # Container Definition
โ”œโ”€โ”€ ๐Ÿ“‹ pyproject.toml                # Python Project Configuration
โ”œโ”€โ”€ ๐Ÿ“ฆ requirements.txt              # Python Dependencies
โ”œโ”€โ”€ โš™๏ธ alembic.ini                   # Migration Configuration
โ”œโ”€โ”€ ๐Ÿ”ง Makefile                      # Development Commands
โ”œโ”€โ”€ ๐Ÿ–ฅ๏ธ dev.bat                       # Windows Development Script
โ””โ”€โ”€ ๐Ÿ“– README.md                     # Project Documentation
๐Ÿ“ Directory Descriptions
Directory Purpose Key Files
src/api/ REST API endpoints and routing auth.py, kolam.py, learning.py
src/services/ Business logic and service layer *_service.py files
src/services/ai/ AI/ML processing services detection_service.py, ollama_service.py
frontend/SIH-F-main/ React frontend application App.jsx, component files
Finetuning/ Machine learning model training finetune.py, model weights
tests/ Automated test suite Test files for all components
monitoring/ Observability and monitoring Prometheus, Grafana configs
alembic/ Database schema migrations Version-controlled DB changes
scripts/ Development and deployment utilities Setup and utility scripts

๐Ÿ” Back to Top

๐Ÿš€ Quick Start

๐Ÿ“‹ Prerequisites

Command Description
.\dev.bat dev Start development server with hot reload
.\dev.bat test Run all tests
.\dev.bat format Format code with ruff
.\dev.bat lint Lint code with ruff
.\dev.bat docker-up Start all Docker services
.\dev.bat docker-down Stop all Docker services
.\dev.bat migrate-up Run database migrations
.\dev.bat migrate-down Rollback database migrations
.\dev.bat setup Run initial setup

Linux/macOS Commands

# Development
make dev              # Start development server
make test             # Run tests
make format           # Format code
make lint             # Lint code
make docker-up        # Start Docker services
make docker-down      # Stop Docker services

# Code Quality
ruff check src/       # Lint code
ruff format src/      # Format code
mypy src/            # Type checking
pytest               # Run tests
pre-commit run --all-files  # Run pre-commit hooks

๐Ÿ—๏ธ Project Structure

kolam-learning-platform/
โ”œโ”€โ”€ ๐Ÿ“ src/
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ api/              # FastAPI routers and endpoints
โ”‚   โ”‚   โ”œโ”€โ”€ auth.py          # Authentication endpoints
โ”‚   โ”‚   โ”œโ”€โ”€ kolam.py         # Kolam-related endpoints
โ”‚   โ”‚   โ”œโ”€โ”€ learning.py      # Learning platform endpoints
โ”‚   โ”‚   โ””โ”€โ”€ users.py         # User management endpoints
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ core/             # Core configuration and utilities
โ”‚   โ”‚   โ”œโ”€โ”€ config.py        # Application settings
โ”‚   โ”‚   โ”œโ”€โ”€ database.py      # Database configuration
โ”‚   โ”‚   โ”œโ”€โ”€ logging.py       # Logging setup
โ”‚   โ”‚   โ””โ”€โ”€ security.py      # Security utilities
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ db/               # Database models and migrations
โ”‚   โ”‚   โ””โ”€โ”€ models/          # SQLAlchemy models
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ services/         # Business logic services
โ”‚   โ”‚   โ”œโ”€โ”€ ๐Ÿ“ ai/           # AI/ML services
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ detection_service.py    # Kolam detection
โ”‚   โ”‚   โ”‚   โ”œโ”€โ”€ generation_service.py   # Pattern generation
โ”‚   โ”‚   โ”‚   โ””โ”€โ”€ ollama_service.py       # LLM integration
โ”‚   โ”‚   โ”œโ”€โ”€ auth_service.py  # Authentication logic
โ”‚   โ”‚   โ”œโ”€โ”€ kolam_service.py # Kolam business logic
โ”‚   โ”‚   โ”œโ”€โ”€ learning_service.py # Learning platform logic
โ”‚   โ”‚   โ””โ”€โ”€ user_service.py  # User management logic
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ schemas/          # Pydantic models for API
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ search/           # OpenSearch integration
โ”‚   โ””โ”€โ”€ main.py              # Application entry point
โ”œโ”€โ”€ ๐Ÿ“ tests/                # Test files
โ”œโ”€โ”€ ๐Ÿ“ monitoring/           # Monitoring and observability
โ”‚   โ”œโ”€โ”€ ๐Ÿ“ grafana/          # Grafana dashboards
โ”‚   โ””โ”€โ”€ prometheus.yml       # Prometheus configuration
โ”œโ”€โ”€ ๐Ÿ“ scripts/              # Utility scripts
โ”œโ”€โ”€ ๐Ÿ“ uploads/              # File uploads directory
โ”œโ”€โ”€ ๐Ÿ“ generated_images/     # AI-generated images
โ”œโ”€โ”€ ๐Ÿ“ logs/                 # Application logs
โ”œโ”€โ”€ docker-compose.yml       # Docker services configuration
โ”œโ”€โ”€ Dockerfile              # Container configuration
โ”œโ”€โ”€ pyproject.toml          # Python project configuration
โ”œโ”€โ”€ requirements.txt        # Python dependencies
โ”œโ”€โ”€ alembic.ini            # Database migration configuration
โ””โ”€โ”€ README.md              # This file

๐Ÿงช Testing

# Run all tests
.\dev.bat test  # Windows
make test       # Linux/macOS

# Run specific test categories
pytest tests/test_api_endpoints.py
pytest tests/test_kolam_detection.py
pytest tests/test_kolam_generation.py

# Run with coverage
pytest --cov=src tests/

๐Ÿณ Docker Support

The platform includes comprehensive Docker support for all services:

# Start all services
docker-compose up -d

# View logs
docker-compose logs -f

# Stop all services
docker-compose down

# Rebuild and start
docker-compose up --build -d

Services Included:

  • PostgreSQL: Primary database
  • OpenSearch: Search and vector operations
  • Ollama: Local LLM for AI features
  • Redis: Caching and session storage
  • Prometheus: Metrics collection
  • Grafana: Monitoring dashboards

๐Ÿ”ง Configuration

Environment Variables

Create a .env file in the project root:

# Database Configuration
DATABASE_URL=sqlite:///./kolam.db  # For development
# DATABASE_URL=postgresql://user:pass@localhost:5432/kolam_db  # For production

# AI/ML Configuration
OLLAMA_BASE_URL=http://localhost:11434
OLLAMA_MODEL=llama2

# Security
SECRET_KEY=your-secret-key-here
ACCESS_TOKEN_EXIRE_MINUTES=30

# Application Settings
DEBUG=true
LOG_LEVEL=INFO

Database Options

  1. SQLite (Default - No setup required)

    • Perfect for development
    • No external dependencies
    • File-based database
  2. PostgreSQL (Production recommended)

    • Better performance
    • Advanced features
    • Requires Docker or local installation

๐Ÿ“Š Monitoring & Observability

The platform includes comprehensive monitoring:

  • Health Checks: /health endpoint
  • Metrics: Prometheus integration
  • Logging: Structured logging with context
  • Tracing: OpenTelemetry support
  • Dashboards: Grafana visualizations

Access monitoring at:

๐Ÿค Contributing

We welcome contributions from developers, designers, cultural experts, and art enthusiasts! ๐ŸŽจ

๐ŸŒŸ How to Contribute

Good First Issues Help Wanted

๐Ÿš€ Development Workflow
  1. ๐Ÿด Fork the repository
  2. ๐ŸŒฟ Create a feature branch: git checkout -b feature/amazing-feature
  3. ๐Ÿ’ป Develop your changes with tests
  4. ๐Ÿงช Test your code: .\dev.bat test
  5. โœจ Format code: .\dev.bat format
  6. ๐Ÿ“ Commit changes: git commit -m 'Add amazing feature'
  7. ๐Ÿ“ค Push to branch: git push origin feature/amazing-feature
  8. ๐Ÿ”„ Open a Pull Request
๐ŸŽฏ Contribution Areas
Area Skills Needed Impact
๐Ÿค– AI/ML TensorFlow, PyTorch, CV High
๐ŸŒ Backend FastAPI, Python, SQL High
โš›๏ธ Frontend React, JavaScript, CSS High
๐ŸŽจ UI/UX Design, Figma, User Research Medium
๐Ÿ“š Documentation Writing, Markdown Medium
๐Ÿงช Testing Pytest, Testing Strategies Medium
๐ŸŒ Cultural Content Kolam Knowledge, Art History High
๐Ÿ”ง DevOps Docker, CI/CD, Monitoring Medium

๐Ÿ“‹ Contribution Guidelines

  • Code Quality: Follow PEP 8 for Python, ESLint for JavaScript
  • Testing: Write tests for new features and bug fixes
  • Documentation: Update docs for any API or feature changes
  • Cultural Sensitivity: Respect traditional art forms and cultural significance
  • Commit Messages: Use conventional commits format

๐ŸŽจ Cultural Contributions

We especially welcome contributions from:

  • Traditional Artists - Share authentic patterns and cultural knowledge
  • Art Historians - Provide historical context and regional variations
  • Cultural Experts - Ensure accuracy and respectful representation
  • Regional Specialists - Add patterns from different Indian states

๐Ÿ” Back to Top

๐Ÿ“ License

MIT License

This project is licensed under the MIT License - see the LICENSE file for details.

๐ŸŽฏ What this means:

  • โœ… Commercial use - Use in commercial projects
  • โœ… Modification - Modify and adapt the code
  • โœ… Distribution - Share and distribute freely
  • โœ… Private use - Use for personal projects
  • โš ๏ธ Attribution required - Include original license

๐Ÿ‘ฅ Team

๐Ÿ† TechTitans Development Team

Name Role GitHub Specialization
Janhvi Bisht ๐ŸŽจ Frontend Lead @janhvi React, UI/UX Design
Kartikeya Trivedi ๐Ÿง  AI/ML Engineer @Kartikeya-trivedi Deep Learning, Computer Vision
Krishna Gupta ๐ŸŒ Backend Lead @krishna FastAPI, Database Design
Kushagra Chaudhary ๐Ÿ”ง DevOps Engineer @kushagra Docker, CI/CD, Infrastructure
Nakshatra Vidyarthi ๐Ÿ“ฑ Full-stack Developer @nakshatra React, Python, API Integration
Rounak Gope ๐Ÿงช QA Engineer @rounak Testing, Quality Assurance

๐ŸŽฏ Project Statistics

Contributors Commits Stars


๐Ÿ“ž Support

๐Ÿ†˜ Need Help?

Documentation Issues Discussions

๐Ÿ“ง Contact Information

Channel Contact Response Time
๐Ÿ“ง Email [email protected] 24-48 hours
๐Ÿ› Bug Reports GitHub Issues 24 hours
๐Ÿ’ก Feature Requests GitHub Discussions 48 hours
๐Ÿ“š Documentation Project Wiki Always Available

๐Ÿค” Frequently Asked Questions

๐ŸŽจ How accurate is the pattern recognition?

Our EfficientNet-B4 model achieves 95%+ accuracy on traditional Kolam patterns. Accuracy may vary for modern interpretations or incomplete patterns.

๐ŸŒ Can I use this offline?

Yes! The platform supports offline mode for basic pattern recognition and learning modules. AI-powered features require internet connectivity.

๐Ÿ“ฑ Is there a mobile app?

Currently, we offer a responsive web application. A dedicated mobile app is in our roadmap for 2024.

๐ŸŽ“ Is this suitable for children?

Absolutely! The platform is designed to be family-friendly and educational, suitable for ages 8 and up with parental guidance.


๐Ÿ—บ๏ธ Roadmap

๐Ÿš€ What's Next?

๐Ÿ“… 2024 Q1 - Q2
  • ๐Ÿ“ฑ Mobile App (React Native)
  • ๐Ÿง  Advanced AI pattern recognition
  • ๐ŸŒ Multi-language support (Tamil, Telugu, Hindi)
  • ๐ŸŽจ 3D Kolam visualization
  • ๐Ÿค Social features and community forums
๐Ÿ“… 2024 Q3 - Q4
  • ๐Ÿฅฝ AR/VR integration for immersive learning
  • ๐Ÿ“š Educational curriculum for schools
  • ๐ŸŽฎ Gamification enhancements
  • ๐ŸŒ Global expansion to other traditional arts
  • ๐Ÿค– AI tutor for personalized guidance
๐Ÿ“… 2025 and Beyond
  • ๐Ÿงฌ Blockchain for pattern authenticity
  • ๐ŸŽช Virtual exhibitions and galleries
  • ๐Ÿ‘ฉโ€๐Ÿซ Master craftsperson video tutorials
  • ๐ŸŒŠ Real-time collaboration on patterns
  • ๐Ÿ† Certification program for traditional arts

๐Ÿ™ Acknowledgments

๐Ÿ’– Special Thanks

  • ๐ŸŽจ Traditional Artists - For preserving and sharing this beautiful art form
  • ๐Ÿ›๏ธ Cultural Institutions - For historical patterns and cultural context
  • ๐ŸŒ Open Source Community - For the amazing tools and libraries
  • ๐Ÿ‘ฅ Beta Testers - For valuable feedback and testing
  • ๐Ÿซ Educational Partners - For curriculum guidance and testing
  • ๐Ÿ’ป Technology Partners - For infrastructure and AI model support

๐Ÿ› ๏ธ Built With Love Using

FastAPI React Python TensorFlow Docker PostgreSQL


๐ŸŒŸ Star us on GitHub!

If you find this project helpful, please consider giving it a โญ

GitHub stars


Made with โค๏ธ by the TechTitans team

๐ŸŽจ Preserving cultural heritage through technology ๐Ÿš€


Visitors

๐Ÿ” Back to Top

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •