Skip to content

对于原版做了一些修改。可以检测视频,批量检测图片。写了跟tiny速度精度差不多,weights大小是十分之一的dense yolo网络。

License

Notifications You must be signed in to change notification settings

KoapT/tensorflow-yolo-v3

 
 

Repository files navigation

tensorflow-yolo-v3

Implementation of YOLO v3 object detector in Tensorflow (TF-Slim). Full tutorial can be found here.

Tested on Python 3.5, Tensorflow 1.11.0 on Ubuntu 16.04.

Todo list:

  • YOLO v3 architecture
  • Basic working demo
  • Weights converter (util for exporting loaded COCO weights as TF checkpoint)
  • Training pipeline
  • More backends

How to run the demo:

To run demo type this in the command line:

  1. Download COCO class names file: wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names
  2. Download and convert model weights:
    1. Download binary file with desired weights:
      1. Full weights: wget https://pjreddie.com/media/files/yolov3.weights
      2. Tiny weights: wget https://pjreddie.com/media/files/yolov3-tiny.weights
      3. SPP weights: wget https://pjreddie.com/media/files/yolov3-spp.weights
    2. Run python ./convert_weights.py and python ./convert_weights_pb.py
  3. Run python ./demo.py --input_img <path-to-image> --output_img <name-of-output-image> --frozen_model <path-to-frozen-model>

####Optional Flags

  1. convert_weights:
    1. --class_names
      1. Path to the class names file
    2. --weights_file
      1. Path to the desired weights file
    3. --data_format
      1. NCHW (gpu only) or NHWC
    4. --tiny
      1. Use yolov3-tiny
    5. --spp
      1. Use yolov3-spp
    6. --ckpt_file
      1. Output checkpoint file
  2. convert_weights_pb.py:
    1. --class_names 1. Path to the class names file
    2. --weights_file
      1. Path to the desired weights file
    3. --data_format
      1. NCHW (gpu only) or NHWC
    4. --tiny
      1. Use yolov3-tiny
    5. --spp
      1. Use yolov3-spp
    6. --output_graph
      1. Location to write the output .pb graph to
  3. demo.py
    1. --class_names
      1. Path to the class names file
    2. --weights_file
      1. Path to the desired weights file
    3. --data_format
      1. NCHW (gpu only) or NHWC
    4. --ckpt_file
      1. Path to the checkpoint file
    5. --frozen_model
      1. Path to the frozen model
    6. --conf_threshold
      1. Desired confidence threshold
    7. --iou_threshold
      1. Desired iou threshold
    8. --gpu_memory_fraction
      1. Fraction of gpu memory to work with
    9. '--keep_aspect_ratio'
      1. keep the images' aspect ratio while resizing.

About

对于原版做了一些修改。可以检测视频,批量检测图片。写了跟tiny速度精度差不多,weights大小是十分之一的dense yolo网络。

Resources

License

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%