Skip to content

[AISTATS 2025] Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

Notifications You must be signed in to change notification settings

KrishnaswamyLab/GeometryAwareGenerativeAutoencoder

 
 

Repository files navigation

[AISTATS 2025] GAGA 💃🪩

Geometry-Aware Generative Autoencoder for
Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

ArXiv AISTATS Twitter

Citation

If you find this work useful in your research, please consider citing:

@inproceedings{sun2025geometry,
  title={Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds}, 
  author={Xingzhi Sun and Danqi Liao and Kincaid MacDonald and Yanlei Zhang and Chen Liu and Guillaume Huguet and Guy Wolf and Ian Adelstein and Tim G. J. Rudner and Smita Krishnaswamy},
  booktitle={International Conference on Artificial Intelligence and Statistics},
  year={2025},
  organization={PMLR},      
}

Installation

conda create -n dmae -c conda-forge python=3.11.5
conda activate dmae
pip install -r requirements.txt
pip install -e . # install the package in dev mode.

If you also want to use jupyter notebooks, install

conda install -c anaconda ipykernel
python -m ipykernel install --user --name=dmae

Visualizing the geometry-aware encoder

Example with toy swiss roll data (npy format)

cd src
python main.py \
    logger.use_wandb=False \
    data.file_type=npy \
    data.require_phate=False \
    data.datapath=../data/swiss_roll.npy \
    data.phatepath=../data/swiss_roll_phate.npy \
    training.max_epochs=5

Example with BMMC myeloid data (anndata format)

cd src
python main.py \
    logger.use_wandb=False \
    data.file_type=h5ad \
    data.require_phate=False \
    data.datapath=../data/BMMC_myeloid.h5ad

Transporting population for single-cell data

cd notebooks/flow_matching
./train.sh
  • Evaluate the model (the example runs for CITE data in 100 PCA dimension)
cd notebooks/flow_matching
./eval.sh

About

[AISTATS 2025] Geometry-Aware Generative Autoencoders for Warped Riemannian Metric Learning and Generative Modeling on Data Manifolds

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.9%
  • Other 0.1%