Skip to content

Commit

Permalink
Add test for litserve.examples (#254)
Browse files Browse the repository at this point in the history
* test OpenAISpec

* fix

* rename examples to test_examples.py

* Revert "rename examples to test_examples.py"

This reverts commit dea60b7.

* test OpenAIBatchContext

---------

Co-authored-by: William Falcon <[email protected]>
  • Loading branch information
aniketmaurya and williamFalcon authored Aug 30, 2024
1 parent b1aaee4 commit cbe65a1
Show file tree
Hide file tree
Showing 3 changed files with 174 additions and 7 deletions.
7 changes: 1 addition & 6 deletions src/litserve/examples/openai_spec_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,7 @@
import time

import litserve as ls
from litserve.specs.openai import ChatMessage, OpenAISpec
from litserve.specs.openai import ChatMessage


class TestAPI(ls.LitAPI):
Expand Down Expand Up @@ -130,8 +130,3 @@ def encode_response(self, output_stream_batch, context):

def unbatch(self, output):
return output


if __name__ == "__main__":
server = ls.LitServer(TestAPIWithCustomEncode(), spec=OpenAISpec())
server.run(port=8000)
2 changes: 1 addition & 1 deletion src/litserve/examples/simple_example.py
Original file line number Diff line number Diff line change
Expand Up @@ -95,7 +95,7 @@ def decode_request(self, request):

def predict(self, x):
for i in range(3):
yield self.model(i, x.encode("utf-8").decode())
yield self.model(i, x)

def encode_response(self, output_stream):
for output in output_stream:
Expand Down
172 changes: 172 additions & 0 deletions tests/test_examples.py
Original file line number Diff line number Diff line change
@@ -1,6 +1,15 @@
import pytest
import torch.nn
from asgi_lifespan import LifespanManager
from httpx import AsyncClient

from litserve.examples.openai_spec_example import (
OpenAIWithUsage,
OpenAIWithUsageEncodeResponse,
OpenAIBatchingWithUsage,
OpenAIBatchContext,
)
from litserve.examples.simple_example import SimpleStreamAPI
from litserve.utils import wrap_litserve_start
import litserve as ls

Expand Down Expand Up @@ -33,3 +42,166 @@ async def test_simple_api():
async with LifespanManager(server.app) as manager, AsyncClient(app=manager.app, base_url="http://test") as ac:
response = await ac.post("/predict", json={"input": 4.0})
assert response.json() == {"output": 16.0}


@pytest.mark.asyncio()
async def test_simple_api_without_server():
api = ls.examples.SimpleLitAPI()
api.setup(None)
assert api.model is not None, "Model should be loaded after setup"
assert api.predict(4) == 16, "Model should be able to predict"


@pytest.mark.asyncio()
async def test_simple_pytorch_api_without_server():
api = ls.examples.SimpleTorchAPI()
api.setup("cpu")
assert api.model is not None, "Model should be loaded after setup"
assert isinstance(api.model, torch.nn.Module)
assert api.decode_request({"input": 4}) == 4, "Request should be decoded"
assert api.predict(torch.Tensor([4])).cpu() == 9, "Model should be able to predict"
assert api.encode_response(9) == {"output": 9}, "Response should be encoded"


@pytest.mark.asyncio()
async def test_simple_stream_api_without_server():
api = SimpleStreamAPI()
api.setup(None)
assert api.model is not None, "Model should be loaded after setup"
assert api.decode_request({"input": 4}) == 4, "Request should be decoded"
assert list(api.predict(4)) == ["0: 4", "1: 4", "2: 4"], "Model should be able to predict"
assert list(api.encode_response(["0: 4", "1: 4", "2: 4"])) == [
{"output": "0: 4"},
{"output": "1: 4"},
{"output": "2: 4"},
], "Response should be encoded"


@pytest.mark.asyncio()
async def test_openai_with_usage():
api = OpenAIWithUsage()
api.setup(None)
response = list(api.predict("10 + 6"))
assert response == [
{
"role": "assistant",
"content": "10 + 6 is equal to 16.",
"prompt_tokens": 25,
"completion_tokens": 10,
"total_tokens": 35,
}
], "Response should match expected output"


@pytest.mark.asyncio()
async def test_openai_with_usage_encode_response():
api = OpenAIWithUsageEncodeResponse()
api.setup(None)
response = list(api.predict("10 + 6"))
encoded_response = list(api.encode_response(response))
assert encoded_response == [
{"role": "assistant", "content": "10"},
{"role": "assistant", "content": " +"},
{"role": "assistant", "content": " "},
{"role": "assistant", "content": "6"},
{"role": "assistant", "content": " is"},
{"role": "assistant", "content": " equal"},
{"role": "assistant", "content": " to"},
{"role": "assistant", "content": " "},
{"role": "assistant", "content": "16"},
{"role": "assistant", "content": "."},
{"role": "assistant", "content": "", "prompt_tokens": 25, "completion_tokens": 10, "total_tokens": 35},
], "Encoded response should match expected output"


@pytest.mark.asyncio()
async def test_openai_batching_with_usage():
api = OpenAIBatchingWithUsage()
api.setup(None)
inputs = ["10 + 6", "10 + 6"]
assert api.batch(inputs) == inputs, "Batched inputs should match expected output"
batched_response = list(api.predict(inputs))
assert batched_response == [["10 + 6 is equal to 16."] * 2], "Batched response should match expected output"
assert api.unbatch(batched_response) == batched_response, "Unbatched response should match batched response"
encoded_response = list(api.encode_response(batched_response, [{"temperature": 1.0}, {"temperature": 1.0}]))
assert encoded_response == [
[
{"role": "assistant", "content": "10 + 6 is equal to 16."},
{"role": "assistant", "content": "10 + 6 is equal to 16."},
],
[
{"role": "assistant", "content": "", "prompt_tokens": 25, "completion_tokens": 10, "total_tokens": 35},
{"role": "assistant", "content": "", "prompt_tokens": 25, "completion_tokens": 10, "total_tokens": 35},
],
], "Encoded batched response should match expected output"


@pytest.mark.asyncio()
async def test_openai_batch_context():
api = OpenAIBatchContext()
api.setup(None)
inputs = ["Hello", "How are you?"]
context = [{"temperature": 0.5}, {"temperature": 0.5}]

# Test batch method
assert api.batch(inputs) == inputs, "Batched inputs should match expected output"

# Test predict method
predicted_output = list(api.predict(inputs, context))
expected_output = [
["Hi! "] * 2,
["It's "] * 2,
["nice "] * 2,
["to "] * 2,
["meet "] * 2,
["you. "] * 2,
["Is "] * 2,
["there "] * 2,
["something "] * 2,
["I "] * 2,
["can "] * 2,
["help "] * 2,
["you "] * 2,
["with "] * 2,
["or "] * 2,
["would "] * 2,
["you "] * 2,
["like "] * 2,
["to "] * 2,
["chat? "] * 2,
]
assert predicted_output == expected_output, "Predicted output should match expected output"

# Test unbatch method
unbatched_output = api.unbatch(predicted_output)
assert unbatched_output == predicted_output, "Unbatched output should match predicted output"

# Test encode_response method
encoded_response = list(api.encode_response(predicted_output, context))
expected_encoded_response = [
[{"role": "assistant", "content": "Hi! "}, {"role": "assistant", "content": "Hi! "}],
[{"role": "assistant", "content": "It's "}, {"role": "assistant", "content": "It's "}],
[{"role": "assistant", "content": "nice "}, {"role": "assistant", "content": "nice "}],
[{"role": "assistant", "content": "to "}, {"role": "assistant", "content": "to "}],
[{"role": "assistant", "content": "meet "}, {"role": "assistant", "content": "meet "}],
[{"role": "assistant", "content": "you. "}, {"role": "assistant", "content": "you. "}],
[{"role": "assistant", "content": "Is "}, {"role": "assistant", "content": "Is "}],
[{"role": "assistant", "content": "there "}, {"role": "assistant", "content": "there "}],
[{"role": "assistant", "content": "something "}, {"role": "assistant", "content": "something "}],
[{"role": "assistant", "content": "I "}, {"role": "assistant", "content": "I "}],
[{"role": "assistant", "content": "can "}, {"role": "assistant", "content": "can "}],
[{"role": "assistant", "content": "help "}, {"role": "assistant", "content": "help "}],
[{"role": "assistant", "content": "you "}, {"role": "assistant", "content": "you "}],
[{"role": "assistant", "content": "with "}, {"role": "assistant", "content": "with "}],
[{"role": "assistant", "content": "or "}, {"role": "assistant", "content": "or "}],
[{"role": "assistant", "content": "would "}, {"role": "assistant", "content": "would "}],
[{"role": "assistant", "content": "you "}, {"role": "assistant", "content": "you "}],
[{"role": "assistant", "content": "like "}, {"role": "assistant", "content": "like "}],
[{"role": "assistant", "content": "to "}, {"role": "assistant", "content": "to "}],
[{"role": "assistant", "content": "chat? "}, {"role": "assistant", "content": "chat? "}],
]
assert encoded_response == expected_encoded_response, "Encoded response should match expected output"

# Ensure context temperatures are set to 1.0
for ctx in context:
assert ctx["temperature"] == 1.0, f"context {ctx} is not 1.0"

0 comments on commit cbe65a1

Please sign in to comment.