Skip to content

Releases: MaartenGr/BERTopic

v0.17.3

08 Jul 10:56
2de0674
Compare
Choose a tag to compare

BERTopic now fully supports uv! You can install BERTopic with uv as follows:

uv add bertopic

v0.17.1

08 Jul 09:04
3e40e04
Compare
Choose a tag to compare

Highlights:

Fixes:

v0.17.0

19 Mar 17:02
0f6f924
Compare
Choose a tag to compare

Highlights:

Fixes:

2025-03-1916-30-14online-video-cutter com-ezgif com-optimize (2)

Model2Vec

With Model2Vec, we now have a very interesting pipeline for light-weight embeddings. Combined with the light-weight installation, you can now run BERTopic without using pytorch!

Installation is straightforward:

pip install --no-deps bertopic
pip install --upgrade numpy pandas scikit-learn tqdm plotly pyyaml

This will install BERTopic even without UMAP or HDBSCAN, so you can use other techniques instead. If these are not installed, then it uses PCA with scikit-learn's HDBSCAN instead. You can install them, together with Model2Vec:

pip install model2vec umap-learn hdbscan

Then, creating a BERTopic model is as straightforward as you are used to:

from bertopic import BERTopic
from model2vec import StaticModel

# Model2Vec
embedding_model = StaticModel.from_pretrained("minishlab/potion-base-8M")

# BERTopic
topic_model = BERTopic(embedding_model=embedding_model)

DataMapPlot

To use the interactive version of DataMapPlot, you only need to run the following:

from umap import UMAP

# Reduce your embeddings to 2-dimensions
reduced_embeddings = UMAP(n_neighbors=10, n_components=2, min_dist=0.0, metric='cosine').fit_transform(embeddings)

# Create an interactive DataMapPlot figure
topic_model.visualize_document_datamap(docs, reduced_embeddings=reduced_embeddings, interactive=True

v0.16.4

09 Oct 10:57
9518035
Compare
Choose a tag to compare

Fixes

v0.16.3

22 Jul 08:25
2353f4c
Compare
Choose a tag to compare

Highlights

  • Simplify zero-shot topic modeling by @ianrandman in #2060
  • Option to choose between c-TF-IDF and Topic Embeddings in many functions by @azikoss in #1894
    • Use the use_ctfidf parameter in the following function to choose between c-TF-IDF and topic embeddings:
      • hierarchical_topics, reduce_topics, visualize_hierarchy, visualize_heatmap, visualize_topics
  • Linting with Ruff by @afuetterer in #2033
  • Switch from setup.py to pyproject.toml by @afuetterer in #1978
  • In multi-aspect context, allow Main model to be chained by @ddicato in #2002

Fixes

v0.16.2

12 May 09:32
ccc9ebd
Compare
Choose a tag to compare

Fixes:

v0.16.1

21 Apr 14:42
e7369d0
Compare
Choose a tag to compare

Highlights:

Fixes:

  • Fixed issue with .merge_models seemingly skipping topic #1898
  • Fixed Cohere client.embed TypeError #1904
  • Fixed AttributeError: 'TextGeneration' object has no attribute 'random_state' #1870
  • Fixed topic embeddings not properly updated if all outliers were removed #1838
  • Fixed issue with representation models not properly merging #1762
  • Fixed Embeddings not ordered correctly when using .merge_models #1804
  • Fixed Outlier topic not in the 0th position when using zero-shot topic modeling causing prediction issues (amongst others) #1804
  • Fixed Incorrect label in ZeroShot doc SVG #1732
  • Fixed MultiModalBackend throws error with clip-ViT-B-32-multilingual-v1 #1670
  • Fixed AuthenticationError while using OpenAI() #1678
  • Update FAQ on Apple Silicon by @benz0li in #1901
  • Add documentation DataMapPlot + FAQ for running on Apple Silicon by @dkapitan in #1854
  • Remove commas from pip install reference in readme by @luisoala in #1850
  • Spelling corrections by @joouha in #1801
  • Replacing the deprecated text-ada-001 model with the latest text-embedding-3-small from OpenAI by @atmb4u in #1800
  • Prevent invalid empty input error when retrieving embeddings with openai backend by @liaoelton in #1827
  • Remove spurious warning about missing embedding model by @sliedes in #1774
  • Fix type hint in ClassTfidfTransformer constructor @snape in #1803
  • Fix typo and simplify wording in OnlineCountVectorizer docstring by @chrisji in #1802
  • Fixed warning when saving a topic model without an embedding model by @zilch42 in #1740
  • Fix bug in TextGeneration by @manveersadhal in #1726
  • Fix an incorrect link to usecases.md by @nicholsonjf in #1731
  • Prevent model argument being passed twice when using generator_kwargs in OpenAI by @ninavandiermen in #1733
  • Several fixes to the docstrings by @arpadikuma in #1719
  • Remove unused cluster_df variable in hierarchical_topics by @shadiakiki1986 in #1701
  • Removed redundant quotation mark by @LawrenceFulton in #1695
  • Fix typo in merge models docs by @zilch42 in #1660

v0.16

27 Nov 08:06
61a2cd2
Compare
Choose a tag to compare

Highlights:

  • Merge pre-trained BERTopic models with .merge_models
    • Combine models with different representations together!
    • Use this for incremental/online topic modeling to detect new incoming topics
    • First step towards federated learning with BERTopic
  • Zero-shot Topic Modeling
    • Use a predefined list of topics to assign documents
    • If needed, allows for further exploration of undefined topics
  • Seed (domain-specific) words with ClassTfidfTransformer
    • Make sure selected words are more likely to end up in the representation without influencing the clustering process
  • Added params to truncate documents to length when using LLMs
  • Added LlamaCPP as a representation model
  • LangChain: Support for LCEL Runnables by @joshuasundance-swca in #1586
  • Added topics parameter to .topics_over_time to select a subset of documents and topics
  • Documentation:
  • Added support for Cohere's Embed v3:
cohere_model = CohereBackend(
    client,
    embedding_model="embed-english-v3.0",
    embed_kwargs={"input_type": "clustering"}
)

Fixes:

Merge Pre-trained BERTopic Models

The new .merge_models feature allows for any number of fitted BERTopic models to be merged. Doing so allows for a number of use cases:

  • Incremental topic modeling -- Continuously merge models together to detect whether new topics have appeared
  • Federated Learning - Train BERTopic models on different clients and combine them on a central server
  • Minimal compute - We can essentially batch the training process into multiple instances to reduce compute
  • Different datasets - When you have different datasets that you want to train seperately on, for example with different languages, you can train each model separately and join them after training

To demonstrate merging different topic models with BERTopic, we use the ArXiv paper abstracts to see which topics they generally contain.

First, we train three separate models on different parts of the data:

from umap import UMAP
from bertopic import BERTopic
from datasets import load_dataset

dataset = load_dataset("CShorten/ML-ArXiv-Papers")["train"]

# Extract abstracts to train on and corresponding titles
abstracts_1 = dataset["abstract"][:5_000]
abstracts_2 = dataset["abstract"][5_000:10_000]
abstracts_3 = dataset["abstract"][10_000:15_000]

# Create topic models
umap_model = UMAP(n_neighbors=15, n_components=5, min_dist=0.0, metric='cosine', random_state=42)
topic_model_1 = BERTopic(umap_model=umap_model, min_topic_size=20).fit(abstracts_1)
topic_model_2 = BERTopic(umap_model=umap_model, min_topic_size=20).fit(abstracts_2)
topic_model_3 = BERTopic(umap_model=umap_model, min_topic_size=20).fit(abstracts_3)

Then, we can combine all three models into one with .merge_models:

# Combine all models into one
merged_model = BERTopic.merge_models([topic_model_1, topic_model_2, topic_model_3])

Zero-shot Topic Modeling

Zeroshot Topic Modeling is a technique that allows you to find pre-defined topics in large amounts of documents. This method allows you to not only find those specific topics but also create new topics for documents that would not fit with your predefined topics. This allows for extensive flexibility as there are three scenario's to explore.
  • No zeroshot topics were detected. This means that none of the documents would fit with the predefined topics and a regular BERTopic would be run.
  • Only zeroshot topics were detected. Here, we would not need to find additional topics since all original documents were assigned to one of the predefined topics.
  • Both zeroshot topics and clustered topics were detected. This means that some documents would fit with the predefined topics where others would not. For the latter, new topics were found.

zeroshot

In order to use zero-shot BERTopic, we create a list of topics that we want to assign to our documents. However,
there may be several other topics that we know should be in the documents. The dataset that we use is small subset of ArXiv papers.
We know the data and believe there to be at least the following topics: clustering, topic modeling, and large language models.
However, we are not sure whether other topics exist and want to explore those.

Using this feature is straightforward:

from datasets import load_dataset

from bertopic import BERTopic
from bertopic.representation import KeyBERTInspired

# We select a subsample of 5000 abstracts from ArXiv
dataset = load_dataset("CShorten/ML-ArXiv-Papers")["train"]
docs = dataset["abstract"][:5_000]

# We define a number of topics that we know are in the documents
zeroshot_topic_list = ["Clustering", "Topic Modeling", "Large Language Models"]

# We fit our model using the zero-shot topics
# and we define a minimum similarity. For each document,
# if the similarity does not exceed that value, it will be used
# for clustering instead.
topic_model = BERTopic(
    embedding_model="thenlper/gte-small", 
    min_topic_size=15,
    zeroshot_topic_list=zeroshot_topic_list,
    zeroshot_min_similarity=.85,
    representation_model=KeyBERTInspired()
)
topics, _ = topic_m...
Read more

v0.15

30 May 16:49
609d49c
Compare
Choose a tag to compare

Highlights:

  • Multimodal Topic Modeling
    • Train your topic modeling on text, images, or images and text!
    • Use the bertopic.backend.MultiModalBackend to embed images, text, both or even caption images!
  • Multi-Aspect Topic Modeling
    • Create multiple topic representations simultaneously
  • Improved Serialization options
    • Push your model to the HuggingFace Hub with .push_to_hf_hub
    • Safer, smaller and more flexible serialization options with safetensors
    • Thanks to a great collaboration with HuggingFace and the authors of BERTransfer!
  • Added new embedding models
    • OpenAI: bertopic.backend.OpenAIBackend
    • Cohere: bertopic.backend.CohereBackend
  • Added example of summarizing topics with OpenAI's GPT-models
  • Added nr_docs and diversity parameters to OpenAI and Cohere representation models
  • Use custom_labels="Aspect1" to use the aspect labels for visualizations instead
  • Added cuML support for probability calculation in .transform
  • Updated topic embeddings
    • Centroids by default and c-TF-IDF weighted embeddings for partial_fit and .update_topics
  • Added exponential_backoff parameter to OpenAI model

Fixes:

  • Fixed custom prompt not working in TextGeneration
  • Fixed #1142
  • Add additional logic to handle cupy arrays by @metasyn in #1179
  • Fix hierarchy viz and handle any form of distance matrix by @elashrry in #1173
  • Updated languages list by @sam9111 in #1099
  • Added level_scale argument to visualize_hierarchical_documents by @zilch42 in #1106
  • Fix inconsistent naming by @rolanderdei in #1073

Multimodal Topic Modeling

With v0.15, we can now perform multimodal topic modeling in BERTopic! The most basic example of multimodal topic modeling in BERTopic is when you have images that accompany your documents. This means that it is expected that each document has an image and vice versa. Instagram pictures, for example, almost always have some descriptions to them.

In this example, we are going to use images from flickr that each have a caption accociated to it:

# NOTE: This requires the `datasets` package which you can 
# install with `pip install datasets`
from datasets import load_dataset

ds = load_dataset("maderix/flickr_bw_rgb")
images = ds["train"]["image"]
docs = ds["train"]["caption"]

The docs variable contains the captions for each image in images. We can now use these variables to run our multimodal example:

from bertopic import BERTopic
from bertopic.representation import VisualRepresentation

# Additional ways of representing a topic
visual_model = VisualRepresentation()

# Make sure to add the `visual_model` to a dictionary
representation_model = {
   "Visual_Aspect":  visual_model,
}
topic_model = BERTopic(representation_model=representation_model, verbose=True)

We can now access our image representations for each topic with topic_model.topic_aspects_["Visual_Aspect"].
If you want an overview of the topic images together with their textual representations in jupyter, you can run the following:

import base64
from io import BytesIO
from IPython.display import HTML

def image_base64(im):
    if isinstance(im, str):
        im = get_thumbnail(im)
    with BytesIO() as buffer:
        im.save(buffer, 'jpeg')
        return base64.b64encode(buffer.getvalue()).decode()


def image_formatter(im):
    return f'<img src="data:image/jpeg;base64,{image_base64(im)}">'

# Extract dataframe
df = topic_model.get_topic_info().drop("Representative_Docs", 1).drop("Name", 1)

# Visualize the images
HTML(df.to_html(formatters={'Visual_Aspect': image_formatter}, escape=False))

images_and_text

Multi-aspect Topic Modeling

In this new release, we introduce multi-aspect topic modeling! During the .fit or .fit_transform stages, you can now get multiple representations of a single topic. In practice, it works by generating and storing all kinds of different topic representations (see image below).

![Image title](getting_started/multiaspect/multiaspect.svg)

The approach is rather straightforward. We might want to represent our topics using a PartOfSpeech representation model but we might also want to try out KeyBERTInspired and compare those representation models. We can do this as follows:

from bertopic.representation import KeyBERTInspired
from bertopic.representation import PartOfSpeech
from bertopic.representation import MaximalMarginalRelevance
from sklearn.datasets import fetch_20newsgroups

# Documents to train on
docs = fetch_20newsgroups(subset='all',  remove=('headers', 'footers', 'quotes'))['data']

# The main representation of a topic
main_representation = KeyBERTInspired()

# Additional ways of representing a topic
aspect_model1 = PartOfSpeech("en_core_web_sm")
aspect_model2 = [KeyBERTInspired(top_n_words=30), MaximalMarginalRelevance(diversity=.5)]

# Add all models together to be run in a single `fit`
representation_model = {
   "Main": main_representation,
   "Aspect1":  aspect_model1,
   "Aspect2":  aspect_model2 
}
topic_model = BERTopic(representation_model=representation_model).fit(docs)

As show above, to perform multi-aspect topic modeling, we make sure that representation_model is a dictionary where each representation model pipeline is defined.
The main pipeline, that is used in most visualization options, is defined with the "Main" key. All other aspects can be defined however you want. In the example above, the two additional aspects that we are interested in are defined as "Aspect1" and "Aspect2".

After we have fitted our model, we can access all representations with topic_model.get_topic_info():

table

As you can see, there are a number of different representations for our topics that we can inspect. All aspects are found in topic_model.topic_aspects_.

Serialization

Saving, loading, and sharing a BERTopic model can be done in several ways. With this new release, it is now advised to go with .safetensors as that allows for a small, safe, and fast method for saving your BERTopic model. However, other formats, such as .pickle and pytorch .bin are also possible.

The methods are used as follows:

topic_model = BERTopic().fit(my_docs)

# Method 1 - safetensors
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
topic_model.save("path/to/my/model_dir", serialization="safetensors", save_ctfidf=True, save_embedding_model=embedding_model)

# Method 2 - pytorch
embedding_model = "sentence-transformers/all-MiniLM-L6-v2"
topic_model.save("path/to/my/model_dir", serialization="pytorch", save_ctfidf=True, save_embedding_model=embedding_model)

# Method 3 - pickle
topic_model.save("my_model", serialization="pickle")

Saving the topic modeling with .safetensors or pytorch has a number of advantages:

  • .safetensors is a relatively safe format
  • The resulting model can be very small (often < 20MB>) since no sub-models need to be saved
  • Although version control is important, there is a bit more flexibility with respect to specific versions of packages
  • More easily used in production
  • Share models with the HuggingFace Hub

serialization

The above image, a model trained on 100,000 documents, demonstrates the differences in sizes comparing safetensors, pytorch, and pickle. The difference in sizes can mostly be explained due to the efficient saving procedure and that the clustering and dimensionality reductions are not saved in safetensors/pytorch since inference can be done based on the topic embeddings.

HuggingFace Hub

When you have created a BERTopic model, you can easily share it with other through the HuggingFace Hub. First, you need to log in to your HuggingFace account:

from huggingface_hub import login
login()

When you have logged in to your HuggingFace account, you can save and upload the model as follows:

from bertopic import BERTopic

# Train model
topic_model = BERTopic().fit(my_docs)

# Push to HuggingFace Hub
topic_model.push_to_hf_hub(
    re...
Read more

v0.14.1

02 Mar 13:19
d665d3f
Compare
Choose a tag to compare

Features/Fixes

  • Use ChatGPT to create topic representations!
  • Added delay_in_seconds parameter to OpenAI and Cohere representation models for throttling the API
    • Setting this between 5 and 10 allows for trial users now to use more easily without hitting RateLimitErrors
  • Fixed missing title param to visualization methods
  • Fixed probabilities not correctly aligning (#1024)
  • Fix typo in textgenerator @dkopljar27 in #1002

ChatGPT

Within OpenAI's API, the ChatGPT models use a different API structure compared to the GPT-3 models.
In order to use ChatGPT with BERTopic, we need to define the model and make sure to set chat=True:

import openai
from bertopic import BERTopic
from bertopic.representation import OpenAI

# Create your representation model
openai.api_key = MY_API_KEY
representation_model = OpenAI(model="gpt-3.5-turbo", delay_in_seconds=10, chat=True)

# Use the representation model in BERTopic on top of the default pipeline
topic_model = BERTopic(representation_model=representation_model)

Prompting with ChatGPT is very satisfying and can be customized in BERTopic by using certain tags.
There are currently two tags, namely "[KEYWORDS]" and "[DOCUMENTS]".
These tags indicate where in the prompt they are to be replaced with a topics keywords and top 4 most representative documents respectively.
For example, if we have the following prompt:

prompt = """
I have topic that contains the following documents: \n[DOCUMENTS]
The topic is described by the following keywords: [KEYWORDS]

Based on the information above, extract a short topic label in the following format:
topic: <topic label>
"""

then that will be rendered as follows and passed to OpenAI's API:

"""
I have a topic that contains the following documents: 
- Our videos are also made possible by your support on patreon.co.
- If you want to help us make more videos, you can do so on patreon.com or get one of our posters from our shop.
- If you want to help us make more videos, you can do so there.
- And if you want to support us in our endeavor to survive in the world of online video, and make more videos, you can do so on patreon.com.

The topic is described by the following keywords: videos video you our support want this us channel patreon make on we if facebook to patreoncom can for and more watch 

Based on the information above, extract a short topic label in the following format:
topic: <topic label>
"""

Note
Whenever you create a custom prompt, it is important to add

Based on the information above, extract a short topic label in the following format:
topic: <topic label>

at the end of your prompt as BERTopic extracts everything that comes after topic: . Having
said that, if topic: is not in the output, then it will simply extract the entire response, so
feel free to experiment with the prompts.