This university project explores similarity measures used to compare trajectories and time-series data using Python.
A real-world dataset (Uber trips) is used to demonstrate how similarity metrics behave on practical data.
- Uber trips dataset (CSV file)
- Stored in the
data/folder
- Dynamic Time Warping (DTW)
- Discrete Frechet Distance
- Curve Length
- Area Between Curves
- Point Cloud Matching (PCM)
- Euclidean Distance
- Manhattan Distance
- Chebyshev Distance
- MAE and MSE
- Python
- NumPy
- Pandas
- Matplotlib
- similaritymeasures
- Jupyter Notebook
.
├── similaritymeasuresprojet.ipynb
├── data/
│ └── uber.csv
├── presentation/
│ └── similarity measures.pptx.pdf