Project designed for the Graph Deep Learning course at Università della Svizzera italiana (USI), focusing on postprocessing wind NWP forecasts.
- Install the dependencies:
poetry install
- Activate the environment:
cd spatiotemporal_postprocessing
poetry shell
- Train
Define the folder with the training data:
export DATA_BASE_FOLDER=<FOLDER>
Define the MLFlow tracking URI (defaults to a local folder called mlruns
):
export MLFLOW_TRACKING_URI=<URI>
Train with default settings:
python train.py
Train with a different config:
python train.py --config-name <CFG>
Overwrite (if existing) or append (if not existing) a config value, such as the optimizer:
python train.py ++training.optim.algo=SDG
- Check the logs on MLflow:
mlflow ui --port <PORT>