Skip to content

Project designed for the Graph Deep Learning course at Università della Svizzera italiana (USI), focusing on postprocessing wind NWP forecasts.

License

Notifications You must be signed in to change notification settings

MeteoSwiss/GraphDL-Postprocess-USI-Project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Graph Deep Learning Postprocessing Project @USI

Project designed for the Graph Deep Learning course at Università della Svizzera italiana (USI), focusing on postprocessing wind NWP forecasts.

Description

Quickstart

  1. Install the dependencies:
poetry install
  1. Activate the environment:
cd spatiotemporal_postprocessing
poetry shell
  1. Train

Define the folder with the training data:

export DATA_BASE_FOLDER=<FOLDER>

Define the MLFlow tracking URI (defaults to a local folder called mlruns):

export MLFLOW_TRACKING_URI=<URI>

Train with default settings:

python train.py

Train with a different config:

python train.py --config-name <CFG>

Overwrite (if existing) or append (if not existing) a config value, such as the optimizer:

python train.py ++training.optim.algo=SDG
  1. Check the logs on MLflow:
mlflow ui --port <PORT>

About

Project designed for the Graph Deep Learning course at Università della Svizzera italiana (USI), focusing on postprocessing wind NWP forecasts.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages