-
Notifications
You must be signed in to change notification settings - Fork 9
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #64 from thomaswmorris/discrete
Add support for discrete DOFs
- Loading branch information
Showing
16 changed files
with
422 additions
and
123 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,4 +1,5 @@ | ||
blop/_version.py | ||
# setuptools_scm | ||
src/*/_version.py | ||
|
||
# Byte-compiled / optimized / DLL files | ||
__pycache__/ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -52,6 +52,10 @@ napari = [ | |
"napari" | ||
] | ||
|
||
gui = [ | ||
"nicegui" | ||
] | ||
|
||
dev = [ | ||
"black", | ||
"pytest-codecov", | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,194 @@ | ||
import asyncio | ||
|
||
import databroker | ||
import matplotlib as mpl | ||
import numpy as np | ||
from bluesky.callbacks import best_effort | ||
from bluesky.run_engine import RunEngine | ||
from databroker import Broker | ||
from nicegui import ui | ||
|
||
from blop import DOF, Agent, Objective | ||
from blop.utils import functions | ||
|
||
# MongoDB backend: | ||
db = Broker.named("temp") # mongodb backend | ||
try: | ||
databroker.assets.utils.install_sentinels(db.reg.config, version=1) | ||
except Exception: | ||
pass | ||
|
||
loop = asyncio.new_event_loop() | ||
loop.set_debug(True) | ||
RE = RunEngine({}, loop=loop) | ||
RE.subscribe(db.insert) | ||
|
||
bec = best_effort.BestEffortCallback() | ||
RE.subscribe(bec) | ||
|
||
bec.disable_baseline() | ||
bec.disable_heading() | ||
bec.disable_table() | ||
bec.disable_plots() | ||
|
||
|
||
dofs = [ | ||
DOF(name="x1", description="x1", search_domain=(-5.0, 5.0)), | ||
DOF(name="x2", description="x2", search_domain=(-5.0, 5.0)), | ||
] | ||
|
||
objectives = [Objective(name="himmelblau", target="min")] | ||
|
||
agent = Agent( | ||
dofs=dofs, | ||
objectives=objectives, | ||
digestion=functions.himmelblau_digestion, | ||
db=db, | ||
verbose=True, | ||
tolerate_acquisition_errors=False, | ||
) | ||
|
||
agent.acqf_index = 0 | ||
|
||
agent.acqf_number = 2 | ||
|
||
|
||
with ui.pyplot(figsize=(10, 4), dpi=160) as obj_plt: | ||
extent = [*agent.dofs[0].search_domain, *agent.dofs[1].search_domain] | ||
|
||
ax1 = obj_plt.fig.add_subplot(131) | ||
ax1.set_title("Samples") | ||
im1 = ax1.scatter([], [], cmap="magma") | ||
|
||
ax2 = obj_plt.fig.add_subplot(132, sharex=ax1, sharey=ax1) | ||
ax2.set_title("Posterior mean") | ||
im2 = ax2.imshow(np.random.standard_normal(size=(32, 32)), extent=extent, cmap="magma") | ||
|
||
ax3 = obj_plt.fig.add_subplot(133, sharex=ax1, sharey=ax1) | ||
ax3.set_title("Posterior error") | ||
im3 = ax3.imshow(np.random.standard_normal(size=(32, 32)), extent=extent, cmap="magma") | ||
|
||
data_cbar = obj_plt.fig.colorbar(mappable=im1, ax=[ax1, ax2], location="bottom", aspect=32) | ||
err_cbar = obj_plt.fig.colorbar(mappable=im3, ax=[ax3], location="bottom", aspect=16) | ||
|
||
for ax in [ax1, ax2, ax3]: | ||
ax.set_xlabel(agent.dofs[0].label) | ||
ax.set_ylabel(agent.dofs[1].label) | ||
|
||
|
||
acqf_configs = { | ||
0: {"name": "qr", "long_name": r"quasi-random sampling"}, | ||
1: {"name": "qei", "long_name": r"$q$-expected improvement"}, | ||
2: {"name": "qpi", "long_name": r"$q$-probability of improvement"}, | ||
3: {"name": "qucb", "long_name": r"$q$-upper confidence bound"}, | ||
} | ||
|
||
with ui.pyplot(figsize=(10, 3), dpi=160) as acq_plt: | ||
extent = [*agent.dofs[0].search_domain, *agent.dofs[1].search_domain] | ||
|
||
acqf_plt_objs = {} | ||
|
||
for iax, config in acqf_configs.items(): | ||
if iax == 0: | ||
continue | ||
|
||
acqf = config["name"] | ||
|
||
acqf_plt_objs[acqf] = {} | ||
|
||
acqf_plt_objs[acqf]["ax"] = ax = acq_plt.fig.add_subplot(1, len(acqf_configs) - 1, iax) | ||
|
||
ax.set_title(config["long_name"]) | ||
acqf_plt_objs[acqf]["im"] = ax.imshow([[]], extent=extent, cmap="gray_r") | ||
acqf_plt_objs[acqf]["hist"] = ax.scatter([], []) | ||
acqf_plt_objs[acqf]["best"] = ax.scatter([], []) | ||
|
||
ax.set_xlabel(agent.dofs[0].label) | ||
ax.set_ylabel(agent.dofs[1].label) | ||
|
||
|
||
acqf_button_options = {index: config["name"] for index, config in acqf_configs.items()} | ||
|
||
v = ui.checkbox("visible", value=True) | ||
with ui.column().bind_visibility_from(v, "value"): | ||
ui.toggle(acqf_button_options).bind_value(agent, "acqf_index") | ||
ui.number().bind_value(agent, "acqf_number") | ||
|
||
|
||
def reset(): | ||
agent.reset() | ||
|
||
print(agent.table) | ||
|
||
|
||
def learn(): | ||
acqf_config = acqf_configs[agent.acqf_index] | ||
|
||
acqf = acqf_config["name"] | ||
|
||
n = int(agent.acqf_number) if acqf != "qr" else 16 | ||
|
||
ui.notify(f"sampling {n} points with acquisition function \"{acqf_config['long_name']}\"") | ||
|
||
RE(agent.learn(acqf, n=n)) | ||
|
||
with obj_plt: | ||
obj = agent.objectives[0] | ||
|
||
x_samples = agent.train_inputs().detach().numpy() | ||
y_samples = agent.train_targets(obj.name).detach().numpy()[..., 0] | ||
|
||
x = agent.sample(method="grid", n=20000) # (n, n, 1, d) | ||
p = obj.model.posterior(x) | ||
|
||
m = p.mean.squeeze(-1, -2).detach().numpy() | ||
e = p.variance.sqrt().squeeze(-1, -2).detach().numpy() | ||
|
||
im1.set_offsets(x_samples) | ||
im1.set_array(y_samples) | ||
im1.set_cmap("magma") | ||
|
||
im2.set_data(m.T[::-1]) | ||
im3.set_data(e.T[::-1]) | ||
|
||
obj_norm = mpl.colors.Normalize(vmin=np.nanmin(y_samples), vmax=np.nanmax(y_samples)) | ||
err_norm = mpl.colors.LogNorm(vmin=np.nanmin(e), vmax=np.nanmax(e)) | ||
|
||
im1.set_norm(obj_norm) | ||
im2.set_norm(obj_norm) | ||
im3.set_norm(err_norm) | ||
|
||
for ax in [ax1, ax2, ax3]: | ||
ax.set_xlim(*agent.dofs[0].search_domain) | ||
ax.set_ylim(*agent.dofs[1].search_domain) | ||
|
||
with acq_plt: | ||
x = agent.sample(method="grid", n=20000) # (n, n, 1, d) | ||
x_samples = agent.train_inputs().detach().numpy() | ||
|
||
for acqf in acqf_plt_objs.keys(): | ||
ax = acqf_plt_objs[acqf]["ax"] | ||
|
||
acqf_obj = getattr(agent, acqf)(x).detach().numpy() | ||
|
||
acqf_norm = mpl.colors.Normalize(vmin=np.nanmin(acqf_obj), vmax=np.nanmax(acqf_obj)) | ||
acqf_plt_objs[acqf]["im"].set_data(acqf_obj.T[::-1]) | ||
acqf_plt_objs[acqf]["im"].set_norm(acqf_norm) | ||
|
||
res = agent.ask(acqf, n=int(agent.acqf_number)) | ||
|
||
acqf_plt_objs[acqf]["hist"].remove() | ||
acqf_plt_objs[acqf]["hist"] = ax.scatter(*x_samples.T, ec="b", fc="none", marker="o") | ||
|
||
acqf_plt_objs[acqf]["best"].remove() | ||
acqf_plt_objs[acqf]["best"] = ax.scatter(*res["points"].T, c="r", marker="x", s=64) | ||
|
||
ax.set_xlim(*agent.dofs[0].search_domain) | ||
ax.set_ylim(*agent.dofs[1].search_domain) | ||
|
||
|
||
ui.button("Learn", on_click=learn) | ||
|
||
ui.button("Reset", on_click=reset) | ||
|
||
ui.run(port=8004) |
This file was deleted.
Oops, something went wrong.
Oops, something went wrong.