Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add helper function to get data module for llava #11655

Closed
wants to merge 2 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
30 changes: 30 additions & 0 deletions nemo/collections/vlm/api.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,30 @@
def get_llava_data_module(model_id: str, data_path: str, mbs: int, gbs: int):
from transformers import AutoProcessor

from nemo.collections.common.tokenizers.huggingface.auto_tokenizer import AutoTokenizer
from nemo.collections.multimodal.data.energon import SimpleMultiModalDataModule
from nemo.collections.multimodal.data.energon.config import MultiModalSampleConfig
from nemo.collections.vlm import LlavaNextTaskEncoder

processor = AutoProcessor.from_pretrained(model_id)
tokenizer = AutoTokenizer(model_id)

multimodal_sample_config = MultiModalSampleConfig()
# Setting system prompt to empty string
multimodal_sample_config.conversation_template_config.system = ''

task_encoder = LlavaNextTaskEncoder(
tokenizer=tokenizer.tokenizer,
image_processor=processor.image_processor,
multimodal_sample_config=multimodal_sample_config,
)
return SimpleMultiModalDataModule(
path=data_path,
tokenizer=tokenizer,
image_processor=processor.image_processor,
num_workers=32,
micro_batch_size=mbs,
global_batch_size=gbs,
multimodal_sample_config=multimodal_sample_config,
task_encoder=task_encoder,
)
16 changes: 10 additions & 6 deletions scripts/vlm/llava_next_nemo_run.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
import nemo_run as run

from nemo.collections import vlm
from nemo.collections.vlm.api import get_llava_data_module


def configure_recipe(nodes: int = 1, gpus_per_node: int = 8, pretrain=False, language_model_from_pretrained=None):
Expand Down Expand Up @@ -50,23 +51,26 @@ def local_executor_torchrun(nodes: int = 1, devices: int = 8) -> run.LocalExecut
return executor


def run_pretraining(language_model_from_pretrained=None):
def run_finetuning():
# pylint: disable=C0115,C0116
recipe = configure_recipe(pretrain=True, language_model_from_pretrained=language_model_from_pretrained)
recipe = configure_recipe(pretrain=False)
executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)

run.run(recipe, executor=executor)


def run_finetuning():
def run_pretraining():
# pylint: disable=C0115,C0116
recipe = configure_recipe(pretrain=False)
recipe = configure_recipe(pretrain=True)
executor = local_executor_torchrun(nodes=recipe.trainer.num_nodes, devices=recipe.trainer.devices)
print(f"recipe.model:{recipe.model}")
recipe.data = run.Config(
get_llava_data_module, model_id="llava-hf/llava-v1.6-vicuna-7b-hf", data_path="/data/path", mbs=2, gbs=8
)

run.run(recipe, executor=executor)


# This condition is necessary for the script to be compatible with Python's multiprocessing module.
if __name__ == "__main__":
run_pretraining(language_model_from_pretrained='/root/.cache/nemo/models/lmsys/vicuna-7b-v1.5/')
# run_finetuning()
run_pretraining()
Loading