Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
46 changes: 22 additions & 24 deletions examples/plot_igorio.py
Original file line number Diff line number Diff line change
@@ -1,41 +1,39 @@
"""
IgorProIO Demo (BROKEN)
IgorProIO Demo
=======================

"""

###########################################################
# Import our packages
import os

from urllib.request import urlretrieve
import zipfile
import matplotlib.pyplot as plt
from neo.io import get_io

#############################################################
# Then download some data
# Downloaded from Human Brain Project Collaboratory
# Digital Reconstruction of Neocortical Microcircuitry (nmc-portal)
# http://microcircuits.epfl.ch/#/animal/8ecde7d1-b2d2-11e4-b949-6003088da632
# NOTE: this dataset is not found as the link is broken.
# we can try out some data on the NeuralEnsemble ephy testing repo

# datafile_url = "https://microcircuits.epfl.ch/data/released_data/B95.zip"
# filename_zip = "B95.zip"
# filename = "grouped_ephys/B95/B95_Ch0_IDRest_107.ibw"
# urlretrieve(datafile_url, filename_zip)
url_repo = "https://web.gin.g-node.org/NeuralEnsemble/ephy_testing_data/raw/master/"
distantfile = url_repo + "igor/win-version2.ibw"
localfile = "win-version2.ibw"
urlretrieve(distantfile, localfile)

# zip_ref = zipfile.ZipFile(filename_zip) # create zipfile object
# zip_ref.extract(path=".", member=filename) # extract file to dir
# zip_ref.close()

# ######################################################
# # Once we have our data we can use `get_io` to find an
# # io (Igor in this case). Then we read the analogsignals
# # Finally we will make some nice plots
# reader = get_io(filename)
# signal = reader.read_analogsignal()
# plt.plot(signal.times, signal)
# plt.xlabel(signal.sampling_period.dimensionality)
# plt.ylabel(signal.dimensionality)

# plt.show()
# Once we have our data we can use `get_io` to find an
# io (Igor in this case). Then we read the analogsignals
# Finally we will make some nice plots
#
# Note: not all IOs have all types of read functionality
# see our documentation for a better understanding of the
# Neo object hierarchy and the functionality of differnt IOs

reader = get_io(localfile)
signal = reader.read_analogsignal()
plt.plot(signal.times, signal)
plt.xlabel(signal.sampling_period.dimensionality)
plt.ylabel(signal.dimensionality)

plt.show()
Loading