Skip to content

NiharP31/SFM

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

3D Scene Understanding for Autonomous Driving

A comprehensive pipeline for processing KITTI dataset images through preprocessing, 3D reconstruction, object detection, semantic segmentation, and evaluation.

Overview

This project implements a complete pipeline for analyzing KITTI autonomous driving data, including:

  • Image preprocessing and standardization
  • 3D scene reconstruction using COLMAP
  • Object detection using YOLOv8
  • Semantic segmentation
  • Pipeline evaluation and visualization

Prerequisites

Dependencies

pip install -r requirements.txt

Required packages:

  • OpenCV
  • NumPy
  • COLMAP
  • Ultralytics (YOLOv8)
  • Open3D
  • Matplotlib
  • tqdm

Dataset

Download the KITTI dataset from the official website.

Pipeline Components

1. Data Preprocessing

  • Standardizes image sizes
  • Organizes data structure
  • Preserves timestamp information

2. 3D Reconstruction

  • Feature extraction and matching
  • Sparse reconstruction
  • Dense reconstruction
  • Camera pose estimation

3. Object Detection

  • YOLOv8-based detection
  • Multiple object class support
  • Confidence-based filtering

4. Semantic Segmentation

  • Per-pixel semantic labeling
  • Multi-class segmentation
  • Instance segmentation support

5. Evaluation

  • Detection accuracy metrics
  • Segmentation quality assessment
  • Visualization generation
  • Comprehensive reporting

Usage

  1. Preprocess the data:
python preprocess.py --data_root data --sequence 2011_09_26_drive_0009_sync
  1. Run 3D reconstruction:
python reconstruct.py --input preprocessed_data --output reconstruction_output
  1. Perform object detection:
python detect.py --input preprocessed_data --output detection_output
  1. Run semantic segmentation:
python segment.py --input preprocessed_data --output segmentation_output
  1. Generate evaluation report:
python evaluate.py --base_path .

License

This project is licensed under the MIT License.

Acknowledgments

  • KITTI Dataset Link
  • COLMAP Structure-from-Motion Link
  • YOLOv8 by Ultralytics Link

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages