A comprehensive pipeline for processing KITTI dataset images through preprocessing, 3D reconstruction, object detection, semantic segmentation, and evaluation.
This project implements a complete pipeline for analyzing KITTI autonomous driving data, including:
- Image preprocessing and standardization
- 3D scene reconstruction using COLMAP
- Object detection using YOLOv8
- Semantic segmentation
- Pipeline evaluation and visualization
pip install -r requirements.txt
Required packages:
- OpenCV
- NumPy
- COLMAP
- Ultralytics (YOLOv8)
- Open3D
- Matplotlib
- tqdm
Download the KITTI dataset from the official website.
- Standardizes image sizes
- Organizes data structure
- Preserves timestamp information
- Feature extraction and matching
- Sparse reconstruction
- Dense reconstruction
- Camera pose estimation
- YOLOv8-based detection
- Multiple object class support
- Confidence-based filtering
- Per-pixel semantic labeling
- Multi-class segmentation
- Instance segmentation support
- Detection accuracy metrics
- Segmentation quality assessment
- Visualization generation
- Comprehensive reporting
- Preprocess the data:
python preprocess.py --data_root data --sequence 2011_09_26_drive_0009_sync
- Run 3D reconstruction:
python reconstruct.py --input preprocessed_data --output reconstruction_output
- Perform object detection:
python detect.py --input preprocessed_data --output detection_output
- Run semantic segmentation:
python segment.py --input preprocessed_data --output segmentation_output
- Generate evaluation report:
python evaluate.py --base_path .
This project is licensed under the MIT License.