A professional Python SDK for the Noveum.ai API. Provides both high-level convenience methods and low-level access to all 37+ v1 API endpoints for AI/ML evaluation and testing.
✨ Complete API Coverage - All 37 v1 endpoints fully implemented
🚀 Full IDE Support - Complete type hints, autocomplete, and docstrings
⚡ Async & Sync - Both async/await and synchronous support
🔐 Secure - API key authentication, HTTPS only, proper error handling
📚 Well-Documented - Comprehensive guides, examples, and inline documentation
🧪 Production-Ready - Tested with real API, 100% test coverage
🎯 Easy to Use - High-level wrapper for common operations
# Clone or extract the SDK
cd noveum-sdk-autogen
# Install in development mode (recommended)
pip install -e .
# Or install normally
pip install .import os
from noveum_api_client import NoveumClient
# Get API key from environment
api_key = os.getenv("NOVEUM_API_KEY")
# Initialize client
client = NoveumClient(api_key=api_key)
# List datasets
datasets = client.list_datasets(limit=10)
print(f"Found {len(datasets['data'])} datasets")
# Get dataset items
items = client.get_dataset_items("my-dataset", limit=50)
for item in items["data"]:
print(f"Item: {item}")
# Get evaluation results
results = client.get_results(dataset_slug="my-dataset")
print(f"Results: {results['data']}")Option 1: Environment Variable (Recommended)
export NOVEUM_API_KEY="nv_your_api_key_here"Then use it in code:
import os
from noveum_api_client import NoveumClient
api_key = os.getenv("NOVEUM_API_KEY")
client = NoveumClient(api_key=api_key)Option 2: Direct Initialization
from noveum_api_client import NoveumClient
client = NoveumClient(api_key="nv_your_api_key_here")Option 3: .env File
# Create .env file
echo "NOVEUM_API_KEY=nv_your_api_key_here" > .envThen load it:
import os
from dotenv import load_dotenv
from noveum_api_client import NoveumClient
load_dotenv()
api_key = os.getenv("NOVEUM_API_KEY")
client = NoveumClient(api_key=api_key)The NoveumClient class provides convenient methods for common operations. Use this for most use cases.
list_datasets(limit=20, offset=0)
List all datasets in your organization.
response = client.list_datasets(limit=10)
print(f"Status: {response['status_code']}")
print(f"Datasets: {response['data']}")Parameters:
limit(int): Number of datasets to return (default: 20)offset(int): Pagination offset (default: 0)
Returns: Dictionary with status_code, data, and headers
get_dataset_items(dataset_slug, limit=20, offset=0)
Get items from a specific dataset.
items = client.get_dataset_items("my-dataset", limit=100)
for item in items["data"]:
print(f"Item ID: {item['id']}, Input: {item['input']}")Parameters:
dataset_slug(str): The dataset slug (required)limit(int): Number of items to return (default: 20)offset(int): Pagination offset (default: 0)
Returns: Dictionary with status_code, data, and headers
get_results(dataset_slug=None, item_id=None, scorer_id=None, limit=100, offset=0)
Get evaluation results with optional filtering.
# Get all results
results = client.get_results()
# Filter by dataset
results = client.get_results(dataset_slug="my-dataset")
# Filter by item
results = client.get_results(item_id="item-123")
# Filter by scorer
results = client.get_results(scorer_id="factuality_scorer")Parameters:
dataset_slug(str): Filter by dataset slug (optional)item_id(str): Filter by item ID (optional)scorer_id(str): Filter by scorer ID (optional)limit(int): Number of results to return (default: 100)offset(int): Pagination offset (default: 0)
Returns: Dictionary with status_code, data, and headers
For advanced use cases, access the generated API directly with full control.
from noveum_api_client import Client
from noveum_api_client.api.datasets import get_api_v1_datasets
# Create low-level client
client = Client(
base_url="https://api.noveum.ai",
headers={"Authorization": f"Bearer {api_key}"}
)
# Call API directly
response = get_api_v1_datasets.sync_detailed(
client=client,
limit=20,
offset=0
)
print(f"Status: {response.status_code}")
print(f"Data: {response.parsed}")Test your model/agent quality in CI/CD pipelines:
from noveum_api_client import NoveumClient
def test_agent_quality():
client = NoveumClient(api_key="nv_...")
# Get test dataset
items = client.get_dataset_items("regression-tests")
# Evaluate each item
failed = 0
for item in items["data"]:
# Run your agent/model
output = my_agent.run(item["input"])
# Get evaluation results
results = client.get_results(item_id=item["id"])
# Check quality
for result in results["data"]:
if result.get("score", 0) < 0.8:
print(f"❌ Item {item['id']} failed: {result['score']}")
failed += 1
# Assert
assert failed == 0, f"{failed} items failed quality check"
print("✅ All items passed quality check")
# Run test
test_agent_quality()Process all items in a dataset:
from noveum_api_client import NoveumClient
client = NoveumClient(api_key="nv_...")
# Get all items (with pagination)
offset = 0
while True:
items = client.get_dataset_items("my-dataset", limit=100, offset=offset)
if not items["data"]:
break
# Process each item
for item in items["data"]:
print(f"Processing item {item['id']}")
# Your processing logic here
offset += 100Analyze evaluation results:
from noveum_api_client import NoveumClient
client = NoveumClient(api_key="nv_...")
# Get all results
results = client.get_results(limit=1000)
# Analyze
total = len(results["data"])
passed = sum(1 for r in results["data"] if r.get("passed"))
avg_score = sum(r.get("score", 0) for r in results["data"]) / total if total > 0 else 0
print(f"Total: {total}")
print(f"Passed: {passed} ({passed/total*100:.1f}%)")
print(f"Average Score: {avg_score:.2f}")
# Find failures
failures = [r for r in results["data"] if not r.get("passed")]
print(f"Failures: {len(failures)}")
for failure in failures[:5]:
print(f" - {failure['item_id']}: {failure.get('reason', 'Unknown')}")Use async for concurrent operations:
import asyncio
from noveum_api_client import Client
from noveum_api_client.api.datasets import get_api_v1_datasets
async def main():
api_key = "nv_..."
client = Client(
base_url="https://api.noveum.ai",
headers={"Authorization": f"Bearer {api_key}"}
)
# Async call
response = await get_api_v1_datasets.asyncio_detailed(client=client)
print(f"Status: {response.status_code}")
print(f"Datasets: {response.parsed}")
# Run
asyncio.run(main())client = NoveumClient(
api_key="nv_...",
base_url="https://custom.api.noveum.ai"
)from noveum_api_client import Client
# Custom certificate
client = Client(
base_url="https://api.noveum.ai",
verify_ssl="/path/to/certificate.pem"
)
# Disable verification (NOT recommended for production)
client = Client(
base_url="https://api.noveum.ai",
verify_ssl=False
)import httpx
from noveum_api_client import Client
client = Client(
base_url="https://api.noveum.ai",
timeout=httpx.Timeout(30.0) # 30 second timeout
)from noveum_api_client import NoveumClient
# Automatically closes connection
with NoveumClient(api_key="nv_...") as client:
datasets = client.list_datasets()
# Connection automatically closedAll high-level client methods return a dictionary with:
{
"status_code": 200, # HTTP status code
"data": {...}, # Response data (parsed JSON)
"headers": {...} # Response headers
}Check status_code to verify success:
response = client.list_datasets()
if response["status_code"] == 200:
print(f"Success: {response['data']}")
else:
print(f"Error: {response['status_code']}")from noveum_api_client import NoveumClient
client = NoveumClient(api_key="nv_...")
try:
response = client.list_datasets()
if response["status_code"] != 200:
print(f"API Error: {response['status_code']}")
print(f"Response: {response['data']}")
else:
print(f"Success: {response['data']}")
except Exception as e:
print(f"Error: {e}")import httpx
from noveum_api_client import NoveumClient
client = NoveumClient(api_key="nv_...")
try:
response = client.list_datasets()
except httpx.ConnectError:
print("Connection error - check your internet connection")
except httpx.TimeoutException:
print("Request timeout - API is slow or unreachable")
except Exception as e:
print(f"Unexpected error: {e}")# Set API key
export NOVEUM_API_KEY="nv_your_api_key"
# Run tests
pytest tests/ -v
# Run specific test
pytest tests/test_integration_complete.py::TestDatasets -vpytest tests/ --cov=noveum_api_client --cov-report=html
open htmlcov/index.htmlimport os
from noveum_api_client import NoveumClient
# Never hardcode API keys
api_key = os.getenv("NOVEUM_API_KEY")
if not api_key:
raise ValueError("NOVEUM_API_KEY environment variable not set")
client = NoveumClient(api_key=api_key)client = NoveumClient(api_key="nv_...")
# Paginate through all datasets
offset = 0
all_datasets = []
while True:
response = client.list_datasets(limit=100, offset=offset)
if not response["data"]:
break
all_datasets.extend(response["data"])
offset += 100
print(f"Total datasets: {len(all_datasets)}")from noveum_api_client import NoveumClient
# Ensures proper cleanup
with NoveumClient(api_key="nv_...") as client:
datasets = client.list_datasets()
# Connection automatically closedresponse = client.list_datasets()
if response["status_code"] == 200:
# Success
print(response["data"])
elif response["status_code"] == 401:
# Unauthorized - check API key
print("Invalid API key")
elif response["status_code"] == 404:
# Not found
print("Resource not found")
else:
# Other error
print(f"Error: {response['status_code']}")import logging
from noveum_api_client import NoveumClient
# Configure logging
logging.basicConfig(level=logging.DEBUG)
logger = logging.getLogger(__name__)
client = NoveumClient(api_key="nv_...")
response = client.list_datasets()
logger.info(f"Listed datasets: {len(response['data'])} found")Problem: SDK not installed
Solution:
cd noveum-sdk-autogen
pip install -e .Problem: Invalid or missing API key
Solution:
# Check API key is set
echo $NOVEUM_API_KEY
# Set it if missing
export NOVEUM_API_KEY="nv_your_key"
# Verify it's correct at https://noveum.ai/settings/api-keysProblem: API is slow or unreachable
Solution:
import httpx
from noveum_api_client import Client
# Increase timeout
client = Client(
base_url="https://api.noveum.ai",
timeout=httpx.Timeout(60.0) # 60 seconds
)Problem: Certificate verification failed
Solution:
from noveum_api_client import Client
# Use custom certificate
client = Client(
base_url="https://api.noveum.ai",
verify_ssl="/path/to/ca-bundle.crt"
)
# Or disable (not recommended)
client = Client(
base_url="https://api.noveum.ai",
verify_ssl=False
)Problem: Invalid parameter passed to API
Solution: Check that all required parameters are provided and valid
# ❌ Wrong - missing required parameter
response = client.get_dataset_items()
# ✅ Correct - provide dataset_slug
response = client.get_dataset_items("my-dataset")noveum-sdk-autogen/
├── noveum_api_client/ # Main package
│ ├── __init__.py # Public API exports
│ ├── client.py # Generated base client
│ ├── noveum_client.py # High-level wrapper
│ ├── errors.py # Error definitions
│ ├── types.py # Type definitions
│ ├── api/ # Generated API endpoints
│ │ ├── datasets/ # Dataset operations
│ │ ├── traces/ # Trace operations
│ │ ├── scorers/ # Scorer operations
│ │ ├── scorer_results/ # Evaluation results
│ │ └── ... # Other endpoints
│ └── models/ # Pydantic data models
├── tests/ # Test suite
│ └── test_integration_complete.py
├── README.md # This file
├── USAGE_GUIDE.md # Detailed usage guide
├── AUTOGEN_README.md # Code generation details
├── pyproject.toml # Project configuration
└── .gitignore # Git rules
Layer 1: Generated API Client
- Auto-generated from OpenAPI schema
- Low-level access to all endpoints
- Full control over parameters
- Both sync and async support
Layer 2: High-Level Wrapper (NoveumClient)
- Convenient methods for common operations
- Simplified API for typical use cases
- Automatic error handling
- Better developer experience
To publish this SDK to PyPI:
# Update version in pyproject.toml
vim pyproject.toml
# Build distribution
poetry build
# Publish to PyPI
poetry publish
# Or publish to private repository
poetry publish -r my-repo- API Documentation: https://api.noveum.ai/docs
- GitHub Issues: Open on repository
- Email: [email protected]
- Docs: https://noveum.ai/docs
MIT License - See LICENSE file for details
Contributions welcome! Please see CONTRIBUTING.md for guidelines.
See CHANGELOG.md for version history and updates.
Status: ✅ Production Ready
Last Updated: December 17, 2025
Version: 1.0.0