|
| 1 | +package com.nuix.superutilities.misc; |
| 2 | + |
| 3 | +import java.util.regex.Matcher; |
| 4 | +import java.util.regex.Pattern; |
| 5 | + |
| 6 | +import org.apache.lucene.search.spell.LuceneLevenshteinDistance; |
| 7 | +import org.apache.lucene.search.spell.LevensteinDistance; |
| 8 | +import org.apache.lucene.search.spell.JaroWinklerDistance; |
| 9 | +import org.apache.lucene.search.spell.NGramDistance; |
| 10 | + |
| 11 | +/*** |
| 12 | + * Encapsulates information about a fuzzy term expression. Used by {@link TermExpander}. |
| 13 | + * @author Jason Wells |
| 14 | + * |
| 15 | + */ |
| 16 | +public class FuzzyTermInfo { |
| 17 | + private static Pattern fuzzyPattern = Pattern.compile("(?<term>([a-z0-9]+))~(?<similarity>([0-1]\\.?[0-9]*)?)",Pattern.CASE_INSENSITIVE); |
| 18 | + |
| 19 | + private static LevensteinDistance levDist = new LevensteinDistance(); |
| 20 | + private static LuceneLevenshteinDistance luceneLevDist = new LuceneLevenshteinDistance(); |
| 21 | + private static JaroWinklerDistance jaroDist = new JaroWinklerDistance(); |
| 22 | + private static NGramDistance ngramDist = new NGramDistance(); |
| 23 | + |
| 24 | + public static boolean isFuzzyTerm(String term) { |
| 25 | + return fuzzyPattern.matcher(term.trim()).find(); |
| 26 | + } |
| 27 | + |
| 28 | + /*** |
| 29 | + * Parses a fuzzy term string into component term and similarity score. When a similarity score is |
| 30 | + * not present defaults to 0.5 (like <a href="https://lucene.apache.org/core/2_9_4/queryparsersyntax.html#Fuzzy%20Searches">Lucene</a>). |
| 31 | + * @param term Fuzzy term expression to parse in form: <code>term~0.5</code> or <code>term~</code>. |
| 32 | + * @return A Fuzzy object containing term and similarity score. |
| 33 | + */ |
| 34 | + public static FuzzyTermInfo parseFuzzyTerm(String term) { |
| 35 | + Matcher m = fuzzyPattern.matcher(term); |
| 36 | + FuzzyTermInfo f = new FuzzyTermInfo(); |
| 37 | + if(m.find()) { |
| 38 | + f.term = m.group("term"); |
| 39 | + String similarity = m.group("similarity"); |
| 40 | + if(similarity.trim().isEmpty()) { |
| 41 | + f.similarity = 0.5f; |
| 42 | + } else { |
| 43 | + f.setTargetSimilarity(Float.parseFloat(similarity)); |
| 44 | + } |
| 45 | + } |
| 46 | + return f; |
| 47 | + } |
| 48 | + |
| 49 | + public float calculateLevensteinSimilarityTo(String otherTerm) { |
| 50 | + return levDist.getDistance(this.term, otherTerm); |
| 51 | + } |
| 52 | + |
| 53 | + public float calculateLuceneLevenshteinSimilarityTo(String otherTerm) { |
| 54 | + return luceneLevDist.getDistance(this.term, otherTerm); |
| 55 | + } |
| 56 | + |
| 57 | + public float calculateJaroWinklerSimilarityTo(String otherTerm) { |
| 58 | + return jaroDist.getDistance(this.term, otherTerm); |
| 59 | + } |
| 60 | + |
| 61 | + public float calculateNGramSimilarityTo(String otherTerm) { |
| 62 | + return ngramDist.getDistance(this.term, otherTerm); |
| 63 | + } |
| 64 | + |
| 65 | + private String term = ""; |
| 66 | + private float similarity = 0.5f; |
| 67 | + public FuzzyTermInfo() {} |
| 68 | + |
| 69 | + public String getTerm() { |
| 70 | + return term; |
| 71 | + } |
| 72 | + |
| 73 | + public void setTerm(String term) { |
| 74 | + this.term = term; |
| 75 | + } |
| 76 | + |
| 77 | + public float getTargetSimilarity() { |
| 78 | + return similarity; |
| 79 | + } |
| 80 | + |
| 81 | + public void setTargetSimilarity(float similarity) { |
| 82 | + if(similarity < 0.0f) { this.similarity = 0.0f; } |
| 83 | + else if(similarity > 1.0f) { this.similarity = 1.0f; } |
| 84 | + else { this.similarity = similarity; } |
| 85 | + } |
| 86 | + |
| 87 | + |
| 88 | +} |
0 commit comments