-
Notifications
You must be signed in to change notification settings - Fork 55
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
65 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,65 @@ | ||
from libai.config import LazyCall | ||
from .common.models.vit.vit_base_patch16_224 import model #from .common.models.vit.vit_large_patch16_224 import model | ||
from .common.models.graph import graph | ||
from .common.train import train | ||
from .common.optim import optim | ||
from .common.data.imagenet import dataloader | ||
|
||
from flowvision.data import Mixup | ||
from flowvision.loss.cross_entropy import SoftTargetCrossEntropy | ||
|
||
# Refine data path to imagenet | ||
dataloader.train.dataset[0].root = "/data/ImageNet/extract" | ||
dataloader.test[0].dataset.root = "/data/ImageNet/extract" | ||
|
||
# Refine model cfg for vit training on imagenet | ||
model.cfg.num_classes = 1000 | ||
model.cfg.loss_func = SoftTargetCrossEntropy() | ||
|
||
# Add Mixup Func | ||
dataloader.train.mixup_func = LazyCall(Mixup)( | ||
mixup_alpha=0.8, | ||
cutmix_alpha=1.0, | ||
prob=1.0, | ||
switch_prob=0.5, | ||
mode="batch", | ||
num_classes=model.cfg.num_classes, | ||
) | ||
|
||
# Refine optimizer cfg for vit model | ||
optim.lr = 1e-3 # 5e-4 * 1024 (batchsize) / 512 | ||
optim.eps = 1e-8 | ||
optim.weight_decay = 0.05 | ||
optim.params.clip_grad_max_norm = None | ||
optim.params.clip_grad_norm_type = None | ||
optim.params.overrides = {"pos_embed": {"weight_decay": 0.0}, "cls_token": {"weight_decay": 0.0}} | ||
|
||
# Refine train cfg for vit model | ||
train.train_micro_batch_size = 128 | ||
train.test_micro_batch_size = 128 | ||
# train.train_epoch = 300 | ||
train.train_epoch = 0 | ||
import os | ||
train.train_iter = int(os.getenv("NUM_ITER_ENV")) | ||
train.warmup_ratio = 5 / 300 | ||
train.evaluation.enabled = False | ||
# train.evaluation.eval_period = 100 | ||
train.log_period = 1 | ||
|
||
# Scheduler | ||
train.scheduler.warmup_factor = 0.001 | ||
train.scheduler.alpha = 0.01 | ||
train.scheduler.warmup_method = "linear" | ||
|
||
# Set fp16 ON | ||
train.amp.enabled = True | ||
|
||
# zero | ||
train.zero_optimization.enabled = False | ||
train.zero_optimization.stage = 1 | ||
|
||
# Distributed Settings | ||
train.dist.pipeline_num_layers = model.cfg.depth | ||
train.dist.data_parallel_size = 2 | ||
train.dist.tensor_parallel_size = 2 | ||
train.dist.pipeline_parallel_size = 2 |