Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update: llama3 #556

Open
wants to merge 2 commits into
base: main
Choose a base branch
from
Open

update: llama3 #556

wants to merge 2 commits into from

Conversation

Lusfie
Copy link
Collaborator

@Lusfie Lusfie commented Oct 23, 2024

No description provided.

# data file
alpaca_data/
libai/version.py
sft_result
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个文件不用改动

@@ -114,7 +114,8 @@ def prepare_sample(example: dict, tokenizer, max_length: int) -> dict:

prompt = tokenizer.tokenize(full_prompt, add_bos=True, add_eos=False, device="cpu")[0]
example = tokenizer.tokenize(
full_prompt_and_response, add_bos=True, add_eos=True, device="cpu"
full_prompt_and_response, add_bos=True, add_eos=True, device=None,
# device="cpu"
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

注释可以删掉


self.scale_mask_softmax_fusion = scale_mask_softmax_fusion

self.query_key_value = Linear(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这个实现有问题导致的之后的k,v相关计算对不上,GQA里k,v的num_head数量和q不一样,参考chatglm的方式实现:

self.qkv_hidden_size = 3 * self.projection_size
if self.multi_query_attention:
self.num_multi_query_groups_per_partition = cfg.multi_query_group_num
self.qkv_hidden_size = (
self.projection_size
+ 2 * self.hidden_size_per_attention_head * cfg.multi_query_group_num
)
self.query_key_value = Linear(
cfg.hidden_size,
self.qkv_hidden_size,
bias=cfg.add_bias_linear or cfg.add_qkv_bias,
parallel="col",
layer_idx=self.layer_number - 1,
)

query_key_value = query_key_value.permute(
0, 2, 1, 3
) # [bsz, num_heads, src_len, 3 * head_size]
query, key, value = flow.chunk(query_key_value, chunks=3, dim=-1)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

这里的k和v的num_head排列顺序有问题,GQA里是多个q_head对应单个k_head,v_head,
举个例子

# k的h1对应q的h1,h2
q: [h1, h2, h3, h4]
k: [  h1,    h2]
v: [  h1,    h2]

repeat k,v的head后:

# k的h1对应q的h1,h2
q: [h1, h2, h3, h4]
k: [h1, h1, h2, h2]
v: [h1, h1, h2, h2]

但是这里的实现结果k,v head排列顺序有问题,所以之后计算是有问题的

# k的h1对应q的h1,h2
q: [h1, h2, h3, h4]
k: [h1, h2, h1, h2]
v: [h1, h2, h1, h2]

参考chaglm的实现:

if self.multi_query_attention:
key_layer = key_layer.unsqueeze(-2)
key_layer = key_layer.expand(
-1,
-1,
-1,
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
-1,
)
key_layer = key_layer.contiguous().view(
key_layer.size()[:2]
+ (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
)
value_layer = value_layer.unsqueeze(-2)
value_layer = value_layer.expand(
-1,
-1,
-1,
self.num_attention_heads_per_partition // self.num_multi_query_groups_per_partition,
-1,
)
value_layer = value_layer.contiguous().view(
value_layer.size()[:2]
+ (self.num_attention_heads_per_partition, self.hidden_size_per_attention_head)
)

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

Successfully merging this pull request may close these issues.

2 participants