Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

train dataset would not been initialized during evaluation #53

Open
wants to merge 6 commits into
base: develop
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
125 changes: 64 additions & 61 deletions paddle3d/apis/trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -113,76 +113,79 @@ def __init__(
**dataloader_fn) if isinstance(dataloader_fn,
dict) else dataloader_fn

self.train_dataloader = _dataloader_build_fn(train_dataset, self.model)
self.train_dataloader = _dataloader_build_fn(
train_dataset, self.model) if train_dataset else None
self.eval_dataloader = _dataloader_build_fn(
val_dataset, self.model) if val_dataset else None
self.val_dataset = val_dataset

self.resume = resume
vdl_file_name = None
self.iters_per_epoch = len(self.train_dataloader)
if train_dataset:
self.resume = resume
vdl_file_name = None
self.iters_per_epoch = len(self.train_dataloader)

if iters is None:
self.epochs = epochs
self.iters = epochs * self.iters_per_epoch
self.train_by_epoch = True
else:
self.iters = iters
self.epochs = (iters - 1) // self.iters_per_epoch + 1
self.train_by_epoch = False

self.cur_iter = 0
self.cur_epoch = 0
if iters is None:
self.epochs = epochs
self.iters = epochs * self.iters_per_epoch
self.train_by_epoch = True
else:
self.iters = iters
self.epochs = (iters - 1) // self.iters_per_epoch + 1
self.train_by_epoch = False

if self.optimizer.__class__.__name__ == 'OneCycleAdam':
self.optimizer.before_run(max_iters=self.iters)
self.cur_iter = 0
self.cur_epoch = 0

self.checkpoint = default_checkpoint_build_fn(
**checkpoint) if isinstance(checkpoint, dict) else checkpoint
if self.optimizer.__class__.__name__ == 'OneCycleAdam':
self.optimizer.before_run(max_iters=self.iters)

if isinstance(scheduler, dict):
scheduler.setdefault('train_by_epoch', self.train_by_epoch)
scheduler.setdefault('iters_per_epoch', self.iters_per_epoch)
self.scheduler = default_scheduler_build_fn(**scheduler)
else:
self.scheduler = scheduler

if self.checkpoint is None:
return

if not self.checkpoint.empty:
if not resume:
raise RuntimeError(
'The checkpoint {} is not emtpy! Set `resume=True` to continue training or use another dir as checkpoint'
.format(self.checkpoint.rootdir))

if self.checkpoint.meta.get(
'train_by_epoch') != self.train_by_epoch:
raise RuntimeError(
'Unable to resume training since the train_by_epoch is inconsistent with that saved in the checkpoint'
)

params_dict, opt_dict = self.checkpoint.get()
self.model.set_dict(params_dict)
self.optimizer.set_state_dict(opt_dict)
self.cur_iter = self.checkpoint.meta.get('iters')
self.cur_epoch = self.checkpoint.meta.get('epochs')
self.scheduler.step(self.cur_iter)

logger.info(
'Resume model from checkpoint {}, current iter set to {}'.
format(self.checkpoint.rootdir, self.cur_iter))
vdl_file_name = self.checkpoint.meta['vdl_file_name']
elif resume:
logger.warning(
"Attempt to restore parameters from an empty checkpoint")
self.checkpoint = default_checkpoint_build_fn(
**checkpoint) if isinstance(checkpoint, dict) else checkpoint

if env.local_rank == 0:
self.log_writer = LogWriter(
logdir=self.checkpoint.rootdir, file_name=vdl_file_name)
self.checkpoint.record('vdl_file_name',
os.path.basename(self.log_writer.file_name))
self.checkpoint.record('train_by_epoch', self.train_by_epoch)
if isinstance(scheduler, dict):
scheduler.setdefault('train_by_epoch', self.train_by_epoch)
scheduler.setdefault('iters_per_epoch', self.iters_per_epoch)
self.scheduler = default_scheduler_build_fn(**scheduler)
else:
self.scheduler = scheduler

if self.checkpoint is None:
return

if not self.checkpoint.empty:
if not resume:
raise RuntimeError(
'The checkpoint {} is not emtpy! Set `resume=True` to continue training or use another dir as checkpoint'
.format(self.checkpoint.rootdir))

if self.checkpoint.meta.get(
'train_by_epoch') != self.train_by_epoch:
raise RuntimeError(
'Unable to resume training since the train_by_epoch is inconsistent with that saved in the checkpoint'
)

params_dict, opt_dict = self.checkpoint.get()
self.model.set_dict(params_dict)
self.optimizer.set_state_dict(opt_dict)
self.cur_iter = self.checkpoint.meta.get('iters')
self.cur_epoch = self.checkpoint.meta.get('epochs')
self.scheduler.step(self.cur_iter)

logger.info(
'Resume model from checkpoint {}, current iter set to {}'.
format(self.checkpoint.rootdir, self.cur_iter))
vdl_file_name = self.checkpoint.meta['vdl_file_name']
elif resume:
logger.warning(
"Attempt to restore parameters from an empty checkpoint")

if env.local_rank == 0:
self.log_writer = LogWriter(
logdir=self.checkpoint.rootdir, file_name=vdl_file_name)
self.checkpoint.record(
'vdl_file_name',
os.path.basename(self.log_writer.file_name))
self.checkpoint.record('train_by_epoch', self.train_by_epoch)

def train(self):
"""
Expand Down
3 changes: 2 additions & 1 deletion tools/evaluate.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,7 +80,8 @@ def main(args):
'dataloader_fn': {
'batch_size': batch_size,
'num_workers': args.num_workers
}
},
'train_dataset': None
})

if args.model is not None:
Expand Down