Skip to content

Commit

Permalink
add forward
Browse files Browse the repository at this point in the history
  • Loading branch information
wangzhen38 committed Dec 8, 2021
1 parent 1e12b99 commit c86f1f7
Show file tree
Hide file tree
Showing 43 changed files with 81 additions and 73 deletions.
2 changes: 1 addition & 1 deletion models/contentunderstanding/tagspace/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,7 +57,7 @@ def net(self, input, is_infer=False):
self.vocab_text_size, self.vocab_tag_size, self.emb_dim,
self.hid_dim, self.win_size, self.margin, self.neg_size,
self.text_len)
cos_pos, cos_neg = tagspace_model(input)
cos_pos, cos_neg = tagspace_model.forward(input)
# calculate hinge loss
loss_part1 = paddle.subtract(
paddle.full(
Expand Down
4 changes: 2 additions & 2 deletions models/demo/movie_recommand/rank/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,8 @@ def net(self, input, is_infer=False):
self.batch_size = self.config.get("runner.train_batch_size")
rank_model = DNNLayer(self.sparse_feature_number,
self.sparse_feature_dim, self.hidden_layers)
predict = rank_model(self.batch_size, self.user_sparse_inputs,
self.mov_sparse_inputs, self.label_input)
predict = rank_model.forward(self.batch_size, self.user_sparse_inputs,
self.mov_sparse_inputs, self.label_input)

self.inference_target_var = predict
if is_infer:
Expand Down
5 changes: 3 additions & 2 deletions models/demo/movie_recommand/recall/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,8 +67,9 @@ def net(self, input, is_infer=False):
self.batch_size = self.config.get("runner.train_batch_size")
recall_model = DNNLayer(self.sparse_feature_number,
self.sparse_feature_dim, self.hidden_layers)
predict = recall_model(self.batch_size, self.user_sparse_inputs,
self.mov_sparse_inputs, self.label_input)
predict = recall_model.forward(
self.batch_size, self.user_sparse_inputs, self.mov_sparse_inputs,
self.label_input)

self.inference_target_var = predict
if is_infer:
Expand Down
2 changes: 1 addition & 1 deletion models/match/dssm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ def create_feeds(self, is_infer=False):
def net(self, input, is_infer=False):
dssm_model = DSSMLayer(self.trigram_d, self.neg_num, self.slice_end,
self.hidden_layers, self.hidden_acts)
R_Q_D_p, hit_prob = dssm_model(input, is_infer)
R_Q_D_p, hit_prob = dssm_model.forward(input, is_infer)

self.inference_target_var = R_Q_D_p
self.prune_target_var = dssm_model.query_fc
Expand Down
2 changes: 1 addition & 1 deletion models/match/match-pyramid/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,7 +63,7 @@ def net(self, input, is_infer=False):
self.conv_filter, self.conv_act, self.hidden_size, self.out_size,
self.pool_size, self.pool_stride, self.pool_padding,
self.pool_type, self.hidden_act)
prediction = pyramid_model(input)
prediction = pyramid_model.forward(input)

if is_infer:
fetch_dict = {'prediction': prediction}
Expand Down
2 changes: 1 addition & 1 deletion models/match/multiview-simnet/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def net(self, input, is_infer=False):
self.title_encode_dim, self.emb_size, self.emb_dim,
self.hidden_size, self.margin, self.query_len, self.pos_len,
self.neg_len)
cos_pos, cos_neg = simnet_model(inputs, is_infer)
cos_pos, cos_neg = simnet_model.forward(inputs, is_infer)

self.inference_target_var = cos_pos
if is_infer:
Expand Down
8 changes: 4 additions & 4 deletions models/multitask/maml/dygraph_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,12 +80,12 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
for j in range(update_step):
#内循环
task_optimizer.clear_grad() # 梯度清零
y_hat = task_net(x_spt[i]) # (setsz, ways) [5,5]
y_hat = task_net.forward(x_spt[i]) # (setsz, ways) [5,5]
loss_spt = F.cross_entropy(y_hat, y_spt[i])
loss_spt.backward()
task_optimizer.step()

y_hat = task_net(x_qry[i])
y_hat = task_net.forward(x_qry[i])
loss_qry = F.cross_entropy(y_hat, y_qry[i])
loss_qry.backward()
for k in task_net.parameters():
Expand Down Expand Up @@ -127,12 +127,12 @@ def infer_forward(self, dy_model, metrics_list, batch_data, config):
parameters=task_net.parameters())
for j in range(update_step):
task_optimizer.clear_grad()
y_hat = task_net(x_spt)
y_hat = task_net.forward(x_spt)
loss_spt = F.cross_entropy(y_hat, y_spt)
loss_spt.backward()
task_optimizer.step()

y_hat = task_net(x_qry)
y_hat = task_net.forward(x_qry)
pred_qry = F.softmax(y_hat, axis=1).argmax(axis=1)
correct = paddle.equal(pred_qry, y_qry).numpy().sum().item()
correct_list.append(correct)
Expand Down
2 changes: 1 addition & 1 deletion models/multitask/mmoe/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,7 +51,7 @@ def net(self, inputs, is_infer=False):

MMoE = MMoELayer(self.feature_size, self.expert_num, self.expert_size,
self.tower_size, self.gate_num)
pred_income, pred_marital = MMoE(input_data)
pred_income, pred_marital = MMoE.forward(input_data)

pred_income_1 = paddle.slice(
pred_income, axes=[1], starts=[1], ends=[2])
Expand Down
2 changes: 1 addition & 1 deletion models/multitask/ple/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,7 @@ def net(self, inputs, is_infer=False):
PLE = PLELayer(self.feature_size, self.task_num, self.exp_per_task,
self.shared_num, self.expert_size, self.tower_size,
self.level_number)
pred_income, pred_marital = PLE(input_data)
pred_income, pred_marital = PLE.forward(input_data)

pred_income_1 = paddle.slice(
pred_income, axes=[1], starts=[1], ends=[2])
Expand Down
2 changes: 1 addition & 1 deletion models/multitask/share_bottom/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,7 +50,7 @@ def net(self, inputs, is_infer=False):

ShareBottom = ShareBottomLayer(self.feature_size, self.task_num,
self.bottom_size, self.tower_size)
pred_income, pred_marital = ShareBottom(input_data)
pred_income, pred_marital = ShareBottom.forward(input_data)

pred_income_1 = paddle.slice(
pred_income, axes=[1], starts=[1], ends=[2])
Expand Down
6 changes: 4 additions & 2 deletions models/rank/bert4rec/dygraph_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,8 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
src_ids, pos_ids, sent_ids, input_mask, mask_pos, mask_label = self.create_feeds(
batch_data, config)

prediction = dy_model(src_ids, pos_ids, sent_ids, input_mask, mask_pos)
prediction = dy_model.forward(src_ids, pos_ids, sent_ids, input_mask,
mask_pos)
loss = self.create_loss(prediction, mask_label)

print_dict = {'loss': loss}
Expand Down Expand Up @@ -113,7 +114,8 @@ def evaluate_rec_ndcg_mrr_batch(ratings,
batch_data[:-1], config)
batch_size = config.get("runner.data_batch_size")
candiate = batch_data[-1]
prediction = dy_model(src_ids, pos_ids, sent_ids, input_mask, mask_pos)
prediction = dy_model.forward(src_ids, pos_ids, sent_ids, input_mask,
mask_pos)
pred_ratings = []
self.test_count += 1
for i in range(batch_size):
Expand Down
6 changes: 3 additions & 3 deletions models/rank/bst/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -117,9 +117,9 @@ def net(self, input, is_infer=False):
self.prepostprocess_dropout, self.d_inner_hid, self.relu_dropout,
self.layer_sizes)

pred = bst_model(self.user_input, self.hist_input, self.cate_input,
self.pos_input, self.target_input,
self.target_cate_input, self.target_pos_input)
pred = bst_model.forward(
self.user_input, self.hist_input, self.cate_input, self.pos_input,
self.target_input, self.target_cate_input, self.target_pos_input)

#pred = F.sigmoid(prediction)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/dcn/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -83,7 +83,7 @@ def net(self, input, is_infer=False):
self.clip_by_norm, self.l2_reg_cross, self.is_sparse)
print("----self.dense_input-----", self.dense_input)
print("----self.sparse_inputs----", self.sparse_inputs)
pred, l2_loss = dcn_model(self.sparse_inputs, self.dense_input)
pred, l2_loss = dcn_model.forward(self.sparse_inputs, self.dense_input)

#pred = F.sigmoid(prediction)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/deepfefm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def net(self, input, is_infer=False):
self.sparse_feature_number, self.sparse_feature_dim,
self.dense_input_dim, sparse_number, self.fc_sizes)

pred = deepfefm_model(self.sparse_inputs, self.dense_input)
pred = deepfefm_model.forward(self.sparse_inputs, self.dense_input)

#pred = F.sigmoid(prediction)

Expand Down
6 changes: 3 additions & 3 deletions models/rank/deepfm/net.py
Original file line number Diff line number Diff line change
Expand Up @@ -40,9 +40,9 @@ def __init__(self, sparse_feature_number, sparse_feature_dim,

def forward(self, sparse_inputs, dense_inputs):

y_first_order, y_second_order, feat_embeddings = self.fm(sparse_inputs,
dense_inputs)
y_dnn = self.dnn(feat_embeddings)
y_first_order, y_second_order, feat_embeddings = self.fm.forward(
sparse_inputs, dense_inputs)
y_dnn = self.dnn.forward(feat_embeddings)

predict = F.sigmoid(y_first_order + y_second_order + y_dnn)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/deepfm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def net(self, input, is_infer=False):
self.sparse_feature_number, self.sparse_feature_dim,
self.dense_input_dim, sparse_number, self.fc_sizes)

pred = deepfm_model(self.sparse_inputs, self.dense_input)
pred = deepfm_model.forward(self.sparse_inputs, self.dense_input)

#pred = F.sigmoid(prediction)

Expand Down
16 changes: 8 additions & 8 deletions models/rank/dien/dygraph_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,10 +87,10 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq, neg_hist_item_seq, neg_hist_cat_seq = self.create_feeds(
batch_data, config)

raw_pred, aux_loss = dy_model(hist_item_seq, hist_cat_seq, target_item,
target_cat, label, mask, target_item_seq,
target_cat_seq, neg_hist_item_seq,
neg_hist_cat_seq)
raw_pred, aux_loss = dy_model.forward(
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask,
target_item_seq, target_cat_seq, neg_hist_item_seq,
neg_hist_cat_seq)

loss = self.create_loss(raw_pred, label)
cost = loss + aux_loss
Expand All @@ -105,10 +105,10 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
def infer_forward(self, dy_model, metrics_list, batch_data, config):
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq, neg_hist_item_seq, neg_hist_cat_seq = self.create_feeds(
batch_data, config)
raw_pred, aux_loss = dy_model(hist_item_seq, hist_cat_seq, target_item,
target_cat, label, mask, target_item_seq,
target_cat_seq, neg_hist_item_seq,
neg_hist_cat_seq)
raw_pred, aux_loss = dy_model.forward(
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask,
target_item_seq, target_cat_seq, neg_hist_item_seq,
neg_hist_cat_seq)

predict = paddle.nn.functional.sigmoid(raw_pred)
predict_2d = paddle.concat(x=[1 - predict, predict], axis=1)
Expand Down
2 changes: 1 addition & 1 deletion models/rank/dien/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -108,7 +108,7 @@ def net(self, inputs, is_infer=False):
self.item_emb_size, self.cat_emb_size, self.act, self.is_sparse,
self.use_DataLoader, self.item_count, self.cat_count)

logit, aux_loss = dien_model(
logit, aux_loss = dien_model.forward(
self.hist_item_seq, self.hist_cat_seq, self.target_item,
self.target_cat, self.label, self.mask, self.target_item_seq,
self.target_cat_seq, self.neg_hist_item_seq, self.neg_hist_cat_seq)
Expand Down
2 changes: 1 addition & 1 deletion models/rank/difm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -92,7 +92,7 @@ def net(self, input, is_infer=False):
att_factor_dim=self.att_factor_dim,
att_head_num=self.att_head_num)

pred = difm_model(self.sparse_inputs, self.dense_input)
pred = difm_model.forward(self.sparse_inputs, self.dense_input)
raw_predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)

cost = paddle.nn.functional.cross_entropy(
Expand Down
12 changes: 6 additions & 6 deletions models/rank/din/dygraph_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,9 +86,9 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq = self.create_feeds(
batch_data, config)

raw_pred = dy_model(hist_item_seq, hist_cat_seq, target_item,
target_cat, label, mask, target_item_seq,
target_cat_seq)
raw_pred = dy_model.forward(hist_item_seq, hist_cat_seq, target_item,
target_cat, label, mask, target_item_seq,
target_cat_seq)
loss = self.create_loss(raw_pred, label)
predict = paddle.nn.functional.sigmoid(raw_pred)
predict_2d = paddle.concat([1 - predict, predict], 1)
Expand All @@ -102,9 +102,9 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
def infer_forward(self, dy_model, metrics_list, batch_data, config):
hist_item_seq, hist_cat_seq, target_item, target_cat, label, mask, target_item_seq, target_cat_seq = self.create_feeds(
batch_data, config)
raw_pred = dy_model(hist_item_seq, hist_cat_seq, target_item,
target_cat, label, mask, target_item_seq,
target_cat_seq)
raw_pred = dy_model.forward(hist_item_seq, hist_cat_seq, target_item,
target_cat, label, mask, target_item_seq,
target_cat_seq)

predict = paddle.nn.functional.sigmoid(raw_pred)
predict_2d = paddle.concat([1 - predict, predict], 1)
Expand Down
8 changes: 4 additions & 4 deletions models/rank/din/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -94,10 +94,10 @@ def net(self, inputs, is_infer=False):
self.is_sparse, self.use_DataLoader,
self.item_count, self.cat_count)

raw_predict = din_model(self.hist_item_seq, self.hist_cat_seq,
self.target_item, self.target_cat, self.label,
self.mask, self.target_item_seq,
self.target_cat_seq)
raw_predict = din_model.forward(
self.hist_item_seq, self.hist_cat_seq, self.target_item,
self.target_cat, self.label, self.mask, self.target_item_seq,
self.target_cat_seq)

avg_loss = paddle.nn.functional.binary_cross_entropy_with_logits(
raw_predict, self.label, reduction='mean')
Expand Down
3 changes: 2 additions & 1 deletion models/rank/dlrm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -87,7 +87,8 @@ def net(self, input, is_infer=False):
num_field=self.num_field,
self_interaction=False)

raw_predict_2d = dlrm_model(self.sparse_inputs, self.dense_input)
raw_predict_2d = dlrm_model.forward(self.sparse_inputs,
self.dense_input)

cost = paddle.nn.functional.cross_entropy(
input=raw_predict_2d, label=self.label_input)
Expand Down
4 changes: 2 additions & 2 deletions models/rank/dmr/dygraph_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -85,7 +85,7 @@ def create_metrics(self):
def train_forward(self, dy_model, metrics_list, batch_data, config):
label, input_tensor = self.create_feeds(batch_data, config)

pred, loss = dy_model(input_tensor, False)
pred, loss = dy_model.forward(input_tensor, False)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
Expand All @@ -97,7 +97,7 @@ def train_forward(self, dy_model, metrics_list, batch_data, config):
def infer_forward(self, dy_model, metrics_list, batch_data, config):
label, input_tensor = self.create_feeds(batch_data, config)

pred, loss = dy_model(input_tensor, True)
pred, loss = dy_model.forward(input_tensor, True)
# update metrics
predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
metrics_list[0].update(preds=predict_2d.numpy(), labels=label.numpy())
Expand Down
2 changes: 1 addition & 1 deletion models/rank/dmr/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,7 @@ def net(self, input, is_infer=False):
self.customer_size, self.brand_size, self.btag_size, self.pid_size,
self.main_embedding_size, self.other_embedding_size)

pred, loss = DMR_model(inputs, is_infer)
pred, loss = DMR_model.forward(inputs, is_infer)

predict_2d = paddle.concat(x=[1 - pred, pred], axis=1)
auc, batch_auc, _ = paddle.static.auc(input=predict_2d,
Expand Down
3 changes: 2 additions & 1 deletion models/rank/dnn/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -77,7 +77,8 @@ def net(self, input, is_infer=False):
self.fc_sizes,
sync_mode=self.sync_mode)

raw_predict_2d = dnn_model(self.sparse_inputs, self.dense_input)
raw_predict_2d = dnn_model.forward(self.sparse_inputs,
self.dense_input)

predict_2d = paddle.nn.functional.softmax(raw_predict_2d)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/dnn/static_model_lod.py
Original file line number Diff line number Diff line change
Expand Up @@ -101,7 +101,7 @@ def embedding_layer(input):
self.sparse_feature_number, self.sparse_feature_dim,
self.dense_input_dim, sparse_number, self.fc_sizes)

raw_predict_2d = dnn_model(sparse_embs, self.dense_input)
raw_predict_2d = dnn_model.forward(sparse_embs, self.dense_input)

predict_2d = paddle.nn.functional.softmax(raw_predict_2d)

Expand Down
3 changes: 2 additions & 1 deletion models/rank/ffm/net.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,8 @@ def __init__(self, sparse_feature_number, sparse_feature_dim,

def forward(self, sparse_inputs, dense_inputs):

y_first_order, y_second_order = self.ffm(sparse_inputs, dense_inputs)
y_first_order, y_second_order = self.ffm.forward(sparse_inputs,
dense_inputs)

predict = F.sigmoid(y_first_order + y_second_order + self.bias)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/ffm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -70,7 +70,7 @@ def net(self, input, is_infer=False):
self.sparse_feature_dim, self.dense_input_dim,
sparse_number)

pred = ffm_model(self.sparse_inputs, self.dense_input)
pred = ffm_model.forward(self.sparse_inputs, self.dense_input)

#pred = F.sigmoid(prediction)

Expand Down
3 changes: 2 additions & 1 deletion models/rank/fm/net.py
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,8 @@ def __init__(self, sparse_feature_number, sparse_feature_dim,

def forward(self, sparse_inputs, dense_inputs):

y_first_order, y_second_order = self.fm(sparse_inputs, dense_inputs)
y_first_order, y_second_order = self.fm.forward(sparse_inputs,
dense_inputs)

predict = F.sigmoid(y_first_order + y_second_order + self.bias)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/fm/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,7 +69,7 @@ def net(self, input, is_infer=False):
fm_model = FMLayer(self.sparse_feature_number, self.sparse_feature_dim,
self.dense_input_dim, sparse_number)

pred = fm_model(self.sparse_inputs, self.dense_input)
pred = fm_model.forward(self.sparse_inputs, self.dense_input)

#pred = F.sigmoid(prediction)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/gatenet/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -84,7 +84,7 @@ def net(self, input, is_infer=False):
sparse_number, self.fc_sizes,
self.use_embedding_gate, self.use_hidden_gate)

raw_pred = dnn_model(self.sparse_inputs, self.dense_input)
raw_pred = dnn_model.forward(self.sparse_inputs, self.dense_input)

predict_2d = paddle.concat(x=[1 - raw_pred, raw_pred], axis=1)

Expand Down
2 changes: 1 addition & 1 deletion models/rank/logistic_regression/static_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -59,7 +59,7 @@ def net(self, inputs, is_infer=False):
LR_model = LRLayer(self.sparse_feature_number, init_value_, self.reg,
self.num_field)

self.predict = LR_model(feat_idx, feat_value)
self.predict = LR_model.forward(feat_idx, feat_value)

predict_2d = paddle.concat(x=[1 - self.predict, self.predict], axis=1)
label_int = paddle.cast(self.label, 'int64')
Expand Down
Loading

0 comments on commit c86f1f7

Please sign in to comment.