A package and GitHub Action to generate quality reports on Hugging Face model stats and usage, addressing ambiguity in open model releases.
hf_model_inspector is a Python package and GitHub Action designed to provide clear, structured reports for models hosted on Hugging Face. Open model releases often come with incomplete or inconsistent metadata, making it hard to quickly assess model size, architecture, quantization, and usage statistics.
This tool helps you:
- Inspect model metadata including architecture, parameters, and downloads.
- Handle quantization info cleanly, even when formats differ across releases.
- Generate JSON and Markdown reports for documentation or review purposes.
- Recommend suitable models for your GPU based on memory constraints.
- Automate reporting with a GitHub Action for CI/CD pipelines.
pip install hf_model_inspectorOptional: For private models, you can use a Hugging Face token.
from hf_model_inspector import get_model_report_json
repo_id = "openai/gpt-oss-20b"
report = get_model_report_json(repo_id)
total_params = report["parameters"]["total"]
param_str = f"{total_params:,}" if total_params else "Unknown"
quant_info = report.get("quantization", {})
if quant_info.get("quantized"):
methods = ", ".join(quant_info.get("quant_methods", [])) or "Unknown"
precision = quant_info.get("precision", "Unknown")
quant_status = f"{methods} ({precision})"
else:
quant_status = quant_info.get("dtype", "Not Quantized") or "Not Quantized"
print(f"Model: {report['repo_id']}")
print(f"Architecture: {report['architecture']}")
print(f"Parameters: {param_str}")
print(f"Quantization: {quant_status}")
print(f"Downloads: {report['metadata']['downloads']}")
print(f"Tags: {', '.join(report['metadata']['tags']) if report['metadata']['tags'] else 'None'}")from hf_model_inspector import get_model_report_md, save_model_report
from hf_model_inspector.loader import authenticate_hf
token = authenticate_hf()
repo_id = "openai/gpt-oss-20b"
# Generate and save Markdown report
report_md = get_model_report_md(repo_id, token)
save_model_report(repo_id, md_path="model_report.md", token=token)
print("Markdown report saved as 'model_report.md'")You can automate model reporting on every push or PR using our GitHub Action:
name: HF Model Inspector
on:
push:
branches: [main]
jobs:
inspect:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Run HF Model Inspector
uses: ParagEkbote/[email protected]
with:
repo_id: "openai/gpt-oss-20b"
token: ${{ secrets.HF_TOKEN }}This will automatically generate and store JSON/Markdown reports for your chosen model.
- ✅ Inspect public and private models.
- ✅ Clean handling of quantization and parameter counts.
- ✅ Save JSON or Markdown reports.
- ✅ Recommend models suitable for your GPU.
- ✅ Automate with GitHub Actions for reproducible reporting.