Skip to content

Param1304/AI-Powered-Task-Optimizer

Repository files navigation

AI-Powered Task Optimizer 🚀

A Django-based AI-driven web application that detects mood through text and live facial expressions. It features real-time video analysis, a data visualization dashboard, and intelligent task suggestions to enhance productivity and mental well-being.


📌 Features

Text-Based Mood Classification using BERT + Cosine Similarity
Live Facial Emotion Detection with OpenCV (Face, Smile, and Eye Detection)
Real-Time Video Streaming using Django's StreamingHttpResponse
Interactive Data Analysis Dashboard with Plotly.js
Task Suggestions Based on Mood
Django Backend for Data Storage (SQLite)


📂 Project Structure

task_optimizer/
│── myapp/                      # Main Django App
│   ├── migrations/             # Database migrations
│   ├── __init__.py
│   ├── admin.py                # Django admin configuration
│   ├── apps.py                 # App configuration
│   ├── models.py               # Database Models (MoodEntry, etc.)
│   ├── tests.py                # Unit Tests
│   ├── urls.py                 # URL Routing
│   ├── views.py                # Main application logic (mood detection, video streaming, etc.)
│
│── static/                      # Static Files (CSS, JS, Images)
│   ├── analysis.css             # Styles for the data analysis dashboard
│   ├── detect_face.css          # Styles for the face detection UI
│   ├── styles.css               # General styles
│
│── task_optimizer/              # Django Project Settings
│   ├── __pycache__/             # Python cache files
│   ├── __init__.py
│   ├── asgi.py                  # ASGI Configuration
│   ├── settings.py              # Django Settings
│   ├── urls.py                  # Root URL Routing
│   ├── wsgi.py                  # WSGI Configuration
│
│── templates/                    # HTML Templates
│   ├── analyse_data.html         # Mood analysis dashboard
│   ├── detect_face.html          # Live facial emotion detection page
│   ├── detect_mood.html          # Text-based mood classification page
│   ├── home.html                 # Homepage
│   ├── suggest_task.html         # Task suggestions based on mood
│
│── db.sqlite3                     # SQLite Database
│── manage.py                      # Django Management Script

🚀 Installation & Setup

1️⃣ Clone the Repository

git clone https://github.com/your-username/task_optimizer.git
cd task_optimizer

2️⃣ Create a Virtual Environment

python -m venv venv
source venv/bin/activate  # Mac/Linux
venv\Scripts\activate      # Windows

3️⃣ Install Dependencies

pip install -r requirements.txt

4️⃣ Run Migrations & Start Server

python manage.py migrate
python manage.py runserver

5️⃣ Access the Web App

Open http://127.0.0.1:8000/ in your browser.


🖥️ Usage

🌟 Text-Based Mood Detection

1️⃣ Navigate to Detect Mood
2️⃣ Enter a short text or answer psychological questions
3️⃣ AI (BERT Model) detects mood based on semantic similarity
4️⃣ The detected mood is stored and analyzed

🎭 Real-Time Facial Emotion Recognition

1️⃣ Navigate to Detect Face
2️⃣ The camera captures facial expressions, eye activity, and brightness
3️⃣ Haar cascades (face, smile, eye) classify moods in real-time
4️⃣ The result is displayed and logged

📊 Mood Analysis Dashboard

1️⃣ Navigate to Analyse Data
2️⃣ Line Chart 📈 - Tracks mood changes over time
3️⃣ Bar Chart 📊 - Shows mood distribution

💡 AI-Based Task Suggestions

1️⃣ Based on detected mood, relevant tasks are suggested


📌 Key Technologies Used

Backend: Django (Python)
Frontend: HTML, CSS, JavaScript
Computer Vision: OpenCV (Face, Smile, Eye Detection)
Machine Learning: BERT + Cosine Similarity (Text Analysis)
Data Visualization: Plotly.js
Database: SQLite


🛠️ Useful Git Commands

Initialize a New Repository

git init
git add .
git commit -m "Initial commit"
git branch -M main
git remote add origin https://github.com/your-username/task_optimizer.git
git push -u origin main

Common Git Commands

git status               # Check changes
git add .                # Stage all changes
git commit -m "Message"  # Commit changes
git pull origin main     # Pull latest changes
git push origin main     # Push changes

🚀 Future Enhancements

🔹 Sentiment Analysis with LLMs
🔹 More Advanced Facial Expression Recognition
🔹 Custom AI Models for Task Optimization


📌 Contributors

👤 Param Parekh - Developer
📧 Email: [email protected]


📜 License

This project is open-source under the MIT License.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published