Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
77 changes: 62 additions & 15 deletions src/parcels/interpolators.py
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
"UXPiecewiseLinearNode",
"XFreeslip",
"XLinear",
"XLinearInvdistLandTracer",
"XNearest",
"XPartialslip",
"ZeroInterpolator",
Expand Down Expand Up @@ -75,11 +76,11 @@ def _get_corner_data_Agrid(

# Y coordinates: [yi, yi, yi+1, yi+1] for each spatial point, repeated for time/z
yi_1 = np.clip(yi + 1, 0, data.shape[2] - 1)
yi = np.tile(np.repeat(np.column_stack([yi, yi_1]), 2), (lenT) * (lenZ))
yi = np.tile(np.array([yi, yi, yi_1, yi_1]).flatten(), lenT * lenZ)

# X coordinates: [xi, xi+1, xi, xi+1] for each spatial point, repeated for time/z
xi_1 = np.clip(xi + 1, 0, data.shape[3] - 1)
xi = np.tile(np.column_stack([xi, xi_1, xi, xi_1]).flatten(), (lenT) * (lenZ))
xi = np.tile(np.array([xi, xi_1]).flatten(), lenT * lenZ * 2)

# Create DataArrays for indexing
selection_dict = {
Expand All @@ -91,7 +92,7 @@ def _get_corner_data_Agrid(
if "time" in data.dims:
selection_dict["time"] = xr.DataArray(ti, dims=("points"))

return data.isel(selection_dict).data.reshape(lenT, lenZ, npart, 4)
return data.isel(selection_dict).data.reshape(lenT, lenZ, 2, 2, npart)


def XLinear(
Expand All @@ -114,22 +115,22 @@ def XLinear(
corner_data = _get_corner_data_Agrid(data, ti, zi, yi, xi, lenT, lenZ, len(xsi), axis_dim)

if lenT == 2:
tau = tau[np.newaxis, :, np.newaxis]
corner_data = corner_data[0, :, :, :] * (1 - tau) + corner_data[1, :, :, :] * tau
tau = tau[np.newaxis, :]
corner_data = corner_data[0, :] * (1 - tau) + corner_data[1, :] * tau
else:
corner_data = corner_data[0, :, :, :]
corner_data = corner_data[0, :]

if lenZ == 2:
zeta = zeta[:, np.newaxis]
corner_data = corner_data[0, :, :] * (1 - zeta) + corner_data[1, :, :] * zeta
zeta = zeta[np.newaxis, :]
corner_data = corner_data[0, :] * (1 - zeta) + corner_data[1, :] * zeta
else:
corner_data = corner_data[0, :, :]
corner_data = corner_data[0, :]

value = (
(1 - xsi) * (1 - eta) * corner_data[:, 0]
+ xsi * (1 - eta) * corner_data[:, 1]
+ (1 - xsi) * eta * corner_data[:, 2]
+ xsi * eta * corner_data[:, 3]
(1 - xsi) * (1 - eta) * corner_data[0, 0, :]
+ xsi * (1 - eta) * corner_data[0, 1, :]
+ (1 - xsi) * eta * corner_data[1, 0, :]
+ xsi * eta * corner_data[1, 1, :]
)
return value.compute() if is_dask_collection(value) else value

Expand Down Expand Up @@ -409,8 +410,8 @@ def _Spatialslip(
corner_dataV = _get_corner_data_Agrid(vectorfield.V.data, ti, zi, yi, xi, lenT, lenZ, npart, axis_dim)

def is_land(ti: int, zi: int, yi: int, xi: int):
uval = corner_dataU[ti, zi, :, xi + 2 * yi]
vval = corner_dataV[ti, zi, :, xi + 2 * yi]
uval = corner_dataU[ti, zi, yi, xi, :]
vval = corner_dataV[ti, zi, yi, xi, :]
return np.where(np.isclose(uval, 0.0) & np.isclose(vval, 0.0), True, False)

f_u = np.ones_like(xsi)
Expand Down Expand Up @@ -571,6 +572,52 @@ def XNearest(
return value.compute() if is_dask_collection(value) else value


def XLinearInvdistLandTracer(
particle_positions: dict[str, float | np.ndarray],
grid_positions: dict[_XGRID_AXES, dict[str, int | float | np.ndarray]],
field: Field,
):
"""Linear spatial interpolation on a regular grid, where points on land are not used."""
values = XLinear(particle_positions, grid_positions, field)

xi, xsi = grid_positions["X"]["index"], grid_positions["X"]["bcoord"]
yi, eta = grid_positions["Y"]["index"], grid_positions["Y"]["bcoord"]
zi, zeta = grid_positions["Z"]["index"], grid_positions["Z"]["bcoord"]
ti, tau = grid_positions["T"]["index"], grid_positions["T"]["bcoord"]

axis_dim = field.grid.get_axis_dim_mapping(field.data.dims)
lenT = 2 if np.any(tau > 0) else 1
lenZ = 2 if np.any(zeta > 0) else 1

corner_data = _get_corner_data_Agrid(field.data, ti, zi, yi, xi, lenT, lenZ, len(xsi), axis_dim)

land_mask = np.isnan(corner_data)
nb_land = np.sum(land_mask, axis=(0, 1, 2, 3))

if np.any(nb_land):
all_land_mask = nb_land == 4 * lenZ * lenT
values[all_land_mask] = 0.0

not_all_land = ~all_land_mask
if np.any(not_all_land):
i_grid = np.arange(2)[None, None, None, :, None]
j_grid = np.arange(2)[None, None, :, None, None]
eta_b = eta[None, None, None, None, :]
xsi_b = xsi[None, None, None, None, :]

inv_dist = 1.0 / ((eta_b - j_grid) ** 2 + (xsi_b - i_grid) ** 2)

valid_mask = ~land_mask
weighted = np.where(valid_mask, corner_data * inv_dist, 0.0)

val = np.sum(weighted, axis=(0, 1, 2, 3))
w_sum = np.sum(np.where(valid_mask, inv_dist, 0.0), axis=(0, 1, 2, 3))

values[not_all_land] = val[not_all_land] / w_sum[not_all_land]

return values.compute() if is_dask_collection(values) else values


def UXPiecewiseConstantFace(
particle_positions: dict[str, float | np.ndarray],
grid_positions: dict[_UXGRID_AXES, dict[str, int | float | np.ndarray]],
Expand Down
45 changes: 44 additions & 1 deletion tests/test_interpolation.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,6 +21,7 @@
UXPiecewiseLinearNode,
XFreeslip,
XLinear,
XLinearInvdistLandTracer,
XNearest,
XPartialslip,
ZeroInterpolator,
Expand Down Expand Up @@ -68,9 +69,19 @@ def field():
[0.49, 0.49],
[0.51, 0.51],
[1.49, 6.49],
id="Linear",
id="Linear-1",
),
pytest.param(XLinear, np.timedelta64(1, "s"), 2.5, 0.49, 0.51, 13.99, id="Linear-2"),
pytest.param(
XLinear,
[np.timedelta64(0, "s"), np.timedelta64(1, "s"), np.timedelta64(1, "s")],
[0, 0, 2.5],
[0.49, 0.49, 0.49],
[0.51, 0.51, 0.51],
[1.49, 6.49, 13.99],
id="Linear-3",
),
pytest.param(XLinearInvdistLandTracer, np.timedelta64(1, "s"), 2.5, 0.49, 0.51, 13.99, id="LinearInvDistLand"),
pytest.param(
XNearest,
[np.timedelta64(0, "s"), np.timedelta64(3, "s")],
Expand Down Expand Up @@ -122,6 +133,38 @@ def test_spatial_slip_interpolation(field, func, t, z, y, x, expected):
np.testing.assert_array_almost_equal(velocities, expected)


@pytest.mark.parametrize(
"func, t, z, y, x, expected",
[
(XLinearInvdistLandTracer, np.timedelta64(1, "s"), 0, 0.5, 0.5, 1.0),
(XLinearInvdistLandTracer, np.timedelta64(1, "s"), 0, 1.5, 1.5, 0.0),
(
XLinearInvdistLandTracer,
[np.timedelta64(0, "s"), np.timedelta64(1, "s")],
[0, 2],
[0.5, 0.5],
[0.5, 0.5],
1.0,
),
(
XLinearInvdistLandTracer,
[np.timedelta64(0, "s"), np.timedelta64(1, "s")],
[0, 2],
[0.5, 1.5],
[0.5, 1.5],
[1.0, 0.0],
),
],
)
def test_invdistland_interpolation(field, func, t, z, y, x, expected):
field.data[:] = 1.0
field.data[:, :, 1:3, 1:3] = np.nan # Set NaN land value to test inv_dist
field.interp_method = func

value = field[t, z, y, x]
np.testing.assert_array_almost_equal(value, expected)


@pytest.mark.parametrize("mesh", ["spherical", "flat"])
def test_interpolation_mesh_type(mesh, npart=10):
ds = simple_UV_dataset(mesh=mesh)
Expand Down