Skip to content

Qiskit/qiskit-ibm-transpiler

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

qiskit_ibm_transpiler

PyPI version License

Leverage IBM Quantum's cutting-edge Qiskit Transpiler Service and AI-powered transpiler passes to achieve superior circuit optimization through reinforcement learning algorithms.

✨ Key Features

  • 🧠 AI-Powered Optimization: Advanced routing and circuit synthesis using reinforcement learning algorithms
  • ⚑ Local & Remote Modes: Run AI passes locally or leverage cloud resources
  • ☁️ Cloud-ready: Harness IBM Quantum's cloud infrastructure for intensive computations
  • 🎯 Drop-in Replacement: Seamlessly integrate with existing Qiskit workflows
  • πŸ“ˆ Superior Performance: Our AI models typically outperform traditional heuristic algorithms. Read the benchmark

Note: The cloud transpilation capabilities are only available for IBM Quantum Premium Plan users. The local mode is available to any user and is enabled by default if the local mode dependencies are installed. Currently in beta release.

πŸ“¦ Installation

Basic Installation

pip install qiskit-ibm-transpiler

With Local AI Mode Support

For running AI-powered transpiler passes locally:

pip install qiskit-ibm-transpiler[ai-local-mode]

πŸ” Authentication

The package automatically authenticates using your IBM Quantum Platform credentials aligned with how Qiskit Runtime manages it:

  • Environment variable: QISKIT_IBM_TOKEN
  • Configuration file: ~/.qiskit/qiskit-ibm.json (section: default-ibm-quantum)

πŸš€ Quick Start Guide

Using the Qiskit Transpiler Service

Note: The Qiskit Transpiler Service is currently being migrated. We recommend using local mode instead.

Standard Transpilation

from qiskit.circuit.library import EfficientSU2
from qiskit_ibm_transpiler.transpiler_service import TranspilerService

# Create your circuit
circuit = EfficientSU2(101, entanglement="circular", reps=1).decompose()

# Transpile using cloud service
service = TranspilerService(
    backend_name="ibm_torino",  # or any backend you have access to
    ai="false",
    optimization_level=3,
)
transpiled_circuit = service.run(circuit)

AI-Enhanced Transpiler Passes via Service

from qiskit.circuit.library import EfficientSU2
from qiskit_ibm_transpiler.transpiler_service import TranspilerService

circuit = EfficientSU2(101, entanglement="circular", reps=1).decompose()

# Enable AI optimization for superior results
service = TranspilerService(
    backend_name="ibm_torino",
    ai="true",              # Enable AI passes
    optimization_level=3,
)
optimized_circuit = service.run(circuit)

Auto AI Mode

from qiskit.circuit.library import EfficientSU2
from qiskit_ibm_transpiler.transpiler_service import TranspilerService

circuit = EfficientSU2(101, entanglement="circular", reps=1).decompose()

# Let the service decide the best transpilation approach
service = TranspilerService(
    backend_name="ibm_torino",
    ai="auto",              # Service decides: AI passes vs standard Qiskit
    optimization_level=3,
)
optimized_circuit = service.run(circuit)

With ai="auto", the service intelligently decides whether to apply standard Qiskit heuristic passes or AI-powered passes based on your circuit characteristics.

Service Configuration Options

Parameter Values Description
ai "true", "false", "auto" AI transpilation mode
optimization_level 1, 2, 3 Optimization intensity
backend_name Backend string Target quantum device
coupling_map List of tuples Custom connectivity

Service Limits:

  • Max 1M two-qubit gates per job
  • 30-minute transpilation timeout
  • 20-minute result retrieval window

Note: Only backends accessible through your IBM Quantum account can be used. Alternatively, specify the coupling_map parameter directly.

Using AI Passes Manually

AI Routing Pass

The AIRouting pass provides intelligent layout selection and circuit routing using reinforcement learning:

from qiskit.transpiler import PassManager
from qiskit_ibm_transpiler.ai.routing import AIRouting
from qiskit.circuit.library import EfficientSU2

# Local mode execution
ai_routing = PassManager([
    AIRouting(
        backend_name="ibm_torino", 
        optimization_level=3, 
        layout_mode="optimize",
        local_mode=True  # Run locally for faster execution
    )
])

circuit = EfficientSU2(101, entanglement="circular", reps=1).decompose()
routed_circuit = ai_routing.run(circuit)
Configuration Options
Parameter Options Description
optimization_level 1, 2, 3 Computational effort (higher = better results, longer time)
layout_mode optimize Best for general circuits (default)
improve Uses existing layout as starting point
keep Respects previous layout selection
local_mode True/False Run locally or on cloud

AI Circuit Synthesis Passes

Optimize specific circuit blocks using AI-powered synthesis for superior gate count reduction:

from qiskit.transpiler import PassManager
from qiskit_ibm_transpiler.ai.routing import AIRouting
from qiskit_ibm_transpiler.ai.synthesis import (
    AILinearFunctionSynthesis, AIPauliNetworkSynthesis
)
from qiskit_ibm_transpiler.ai.collection import (
    CollectLinearFunctions, CollectPauliNetworks
)
from qiskit.circuit.library import EfficientSU2

# Complete AI-powered transpilation pipeline
ai_pm = PassManager([
    AIRouting(backend_name="ibm_torino", optimization_level=3, layout_mode="optimize"),
    
    # Collect and synthesize linear functions
    CollectLinearFunctions(),
    AILinearFunctionSynthesis(backend_name="ibm_torino", local_mode=True),
    
    # Collect and synthesize Pauli networks
    CollectPauliNetworks(),
    AIPauliNetworkSynthesis(backend_name="ibm_torino", local_mode=True),
])

circuit = EfficientSU2(10, entanglement="full", reps=1).decompose()
optimized_circuit = ai_pm.run(circuit)

Available Synthesis Passes

Pass Circuit Type Max Qubits Local Mode
AICliffordSynthesis H, S, CX gates 9 βœ…
AILinearFunctionSynthesis CX, SWAP gates 9 βœ…
AIPermutationSynthesis SWAP gates 65, 33, 27 βœ…
AIPauliNetworkSynthesis H, S, SX, CX, RX, RY, RZ 6 βœ…

Hybrid Heuristic-AI Circuit Transpilation

The qiskit-ibm-transpiler allows you to configure a hybrid pass manager that automatically combines the best of Qiskit's heuristic and AI-powered transpiler passes. This feature behaves similarly to the Qiskit generate_pass_manager method:

from qiskit_ibm_transpiler import generate_ai_pass_manager
from qiskit.circuit.library import efficient_su2
from qiskit_ibm_runtime import QiskitRuntimeService

backend = QiskitRuntimeService().backend("ibm_torino")
torino_coupling_map = backend.coupling_map

su2_circuit = efficient_su2(101, entanglement="circular", reps=1)

ai_hybrid_pass_manager = generate_ai_pass_manager(
    coupling_map=torino_coupling_map,
    ai_optimization_level=3,
    optimization_level=3,
    ai_layout_mode="optimize",
)

ai_su2_transpiled_circuit = ai_hybrid_pass_manager.run(su2_circuit)

Configuration Options:

  • coupling_map: Specifies which coupling map to use for the transpilation
  • ai_optimization_level: Level of optimization (1-3) for AI components of the PassManager
  • optimization_level: Optimization level for heuristic components of the PassManager
  • ai_layout_mode: How the AI routing handles layout (see AI routing pass section for options)

Performance Tuning

Thread Pool Configuration:

# Method 1: Per-pass configuration
AILinearFunctionSynthesis(backend_name="ibm_torino", max_threads=20)

# Method 2: Global environment variable
import os
os.environ["AI_TRANSPILER_MAX_THREADS"] = "20"

Smart Replacement:

  • Default: Only replaces if synthesis improves gate count
  • Force replacement: replace_only_if_better=False

Note: Synthesis passes respect device coupling maps and work seamlessly after routing passes.

πŸ”§ Advanced Configuration

Logging

Customize logging levels for debugging and monitoring:

import logging

# Available levels: NOTSET, DEBUG, INFO, WARNING, ERROR, CRITICAL
logging.getLogger("qiskit_ibm_transpiler").setLevel(logging.INFO)

πŸ“š Resources & Support

πŸ“„ Citation

If you use this library in your research, please cite:

@misc{kremer2024practical,
    title={Practical and efficient quantum circuit synthesis and transpiling with Reinforcement Learning},
    author={David Kremer and Victor Villar and Hanhee Paik and Ivan Duran and Ismael Faro and Juan Cruz-Benito},
    year={2024},
    eprint={2405.13196},
    archivePrefix={arXiv},
    primaryClass={quant-ph}
}

About

A library to use the Qiskit Transpiler Service and the AI-powered transpiler passes.

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Contributors 11