Skip to content

[greek_square] Fix a minor mistake #579

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 2 commits into from
Mar 20, 2025
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion lectures/greek_square.md
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@ Chapter 24 of {cite}`russell2004history` about early Greek mathematics and astro
fascinating passage:

```{epigraph}
The square root of 2, which was the first irrational to be discovered, was known to the early Pythagoreans, and ingenious methods of approximating to its value were discovered. The best was as follows: Form two columns of numbers, which we will call the $a$'s and the $b$'s; each starts with a $1$. The next $a$, at each stage, is formed by adding the last $a$ and the $b$ already obtained; the next $b$ is formed by adding twice the previous $a$ to the previous $b$. The first 6 pairs so obtained are $(1,1), (2,3), (5,7), (12,17), (29,41), (70,99)$. In each pair, $2 a - b$ is $1$ or $-1$. Thus $b/a$ is nearly the square root of two, and at each fresh step it gets nearer. For instance, the reader may satisy himself that the square of $99/70$ is very nearly equal to $2$.
The square root of 2, which was the first irrational to be discovered, was known to the early Pythagoreans, and ingenious methods of approximating to its value were discovered. The best was as follows: Form two columns of numbers, which we will call the $a$'s and the $b$'s; each starts with a $1$. The next $a$, at each stage, is formed by adding the last $a$ and the $b$ already obtained; the next $b$ is formed by adding twice the previous $a$ to the previous $b$. The first 6 pairs so obtained are $(1,1), (2,3), (5,7), (12,17), (29,41), (70,99)$. In each pair, $2 a^2 - b^2$ is $1$ or $-1$. Thus $b/a$ is nearly the square root of two, and at each fresh step it gets nearer. For instance, the reader may satisy himself that the square of $99/70$ is very nearly equal to $2$.
```

This lecture drills down and studies this ancient method for computing square roots by using some of the matrix algebra that we've learned in earlier quantecon lectures.
Expand Down
Loading