Skip to content

RobertSamoilescu/score-based-models

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Score based models

diffusion gif

This repo contains some naive implementations of various score-based generative models.

Installation

To install this library, simply run the following command after cloning the repo :

pip install -e .

Methods

The supported methods are:

Run

NCSN

  • 2D gaussian example: notebooks/ncsn_2d_example.ipynb

  • CIFAR-10:

cd scripts
python ncsn_train_cifar10.py --dataset cifar10

You can visualise the CIFAR-10 samples in notebooks/ncsn_view.ipynb.

DDPM

  • 2D gaussian example: notebooks/ddpm_2d_example.ipynb

  • CIFAR-10, Butterfiles:

cd scripts
python ddpm_train.py --dataset [dataset-name]

where [datase-name] can be cifar10 | butterflies.

You can visualise the CIFAR-10 and Butterflies samples in notebooks/ddpp_view.ipynb.

CDDPM

cd scripts
python ddpm_cond_train.py --dataset m1guelpf/nouns

You can visualise the Nouns samples in notebooks/ddpp_cond_view.ipynb.

Results

NCSN

  • 2D Gaussian mixture

Gradient field

  • CIFAR-10 (32 x 32)

CIFAR-10

DDPM

  • CIFAR-10 (32 x 32)

CIFAR-10

  • Butterflies (128 x 128)

Butterflies

CDDPM

  • Nouns (32 x 32)

Nouns

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published