Implement Learning Efficient Convolutional Networks Through Network Slimming on YOLOX
- Sparse-training -> pruning -> fine-tuning
- Automatic applying network slimming on model without modifying the model code(backbone/fpn/head)
- Export pruned model as onnx model
- Find good training recipe on COCO:
- sparsity train epoch/lr
- hyper parameter of sparsity train:
s
- scheduler of
s
: In the original paper the author used a fixeds
parameter, perhaps using a scheduler could get better results - fine-tuning epoch/lr/ratio
- Make train/fine-tuning with fp16 work
Using YOLOX-s model for sparse training, pruning and then fine-tuning, I expected to be able to train a slimming model with better mAP and smaller parameters than YOLOX-Tiny. However, due to limited GPU resources, both models were not fully trained (120 and 25 rounds), and the training hyper parameters and strategies are yet to be explored.
Model | size | mAPval 0.5:0.95 |
Params (M) |
FLOPs (G) |
weights | notes |
---|---|---|---|---|---|---|
YOLOX-s(sparse-training) | 640 | 37.9 | 9.0 | 26.8 | github | max_epoch 120, linear warm up to s=0.0001 |
YOLOX-s(slimming model) | 640 | 16.5 | 1.58 | 6.43 | github github-onnx | network_slim_ratio=0.65, max_epoch=25 |
YOLOX-s(sparse-training) | 640 | 33.8 | 9.0 | 26.8 | github | max_epoch 80, linear warm up 10 epoch s=0.0002 |
YOLOX-s(slimming model) | 640 | 26.74 | github | network_slim_ratio=0.6, max_epoch=80 | ||
YOLOX-s(Official) | 640 | 40.5 | 9.0 | 26.8 | github | |
YOLOX-Tiny(Official) | 416 | 32.8 | 5.06 | 6.45 | github |
Step1. Setup YOLOX
Step2. Install network slimming library:
pip3 install git+https://github.com/Sanster/[email protected]
Generate pruning schema:
python3 tools/gen_pruning_schema.py --save-path ./exps/network_slim/yolox_s_schema.json --name yolox-s
Sparse-training, network_slim_sparsity_train_s
is a hyper parameter that needs to be adjusted according to your data
python3 tools/train.py -d 4 -b 64 \
-f exps/network_slim/yolox_s_slim_train.py \
-expn yolox_s_slim_sparsity_train \
network_slim_sparsity_train_s 0.0001
Apply network slimming and fine-tuning pruned model
python3 tools/train.py -d 4 -b 64 \
-f exps/network_slim/yolox_s_slim.py \
-c ./YOLOX_outputs/yolox_s_slim_sparsity_train/latest_ckpt.pth \
-expn yolox_s_slim_fine_tuning \
network_slim_ratio 0.65
Use slimming model nun demo.py
python3 tools/demo.py image \
-f exps/network_slim/yolox_s_slim.py \
-c ./YOLOX_outputs/yolox_s_slim_fine_tuning/latest_ckpt.pth \
--path assets/dog.jpg --save_result
Use slimming model run eval.py
python3 tools/eval.py -d 4 -b 64 \
-f exps/network_slim/yolox_s_slim.py \
-c ./YOLOX_outputs/yolox_s_slim_fine_tuning/latest_ckpt.pth \
--conf 0.001
Export pruned model as onnx model
python3 tools/export_onnx.py \
-f exps/network_slim/yolox_s_slim.py \
-c ./YOLOX_outputs/yolox_s_slim_fine_tuning/latest_ckpt.pth \
--output-name ./YOLOX_outputs/yolox_s_slim_fine_tuning/latest_ckpt.onnx
Run onnx_inference.py
python3 demo/ONNXRuntime/onnx_inference.py \
-m ./YOLOX_outputs/yolox_s_slim_fine_tuning/latest_ckpt.onnx \
-i assets/dog.jpg -o YOLOX_outputs