Skip to content

SeaRecluse/Chalearn-3D-High-Fidelity-Mask-Face-Presentation-Attack-Detection-Challenge-ICCV2021-Team-HighC

Repository files navigation

Chalearn 3D High-Fidelity Mask Face Presentation Attack Detection Challenge@ICCV2021 —— Team HighC

Infos

The backbone network comes from https://github.com/Randl/ShuffleNetV2-pytorch

Step

Install dependencies:

pip install -r requirements.txt
Data preprocessing:
If you have full content data data, it should look like this in the folder
--orig_data
    -train *
    -test *
    -val *
    -train_label.txt *
    -val_label.txt *
    -test.txt *
    -val.txt *
    -getFacesList.py
    -sortDataWithLabel.py
    -dataUpper.py
    -cut.py
    -detect_face_wIth_align
// Build a folder to save face alignment results
// For pictures with no faces detected, manual calibration is recommended
use getFacesList.py

// we use retinaface .25 to detect face and do face align
use main.py in /orig_data/detect_face_wIth_align

// Integrate your face alignment data
use sortDataWithLabel.py

// Data enhancement
use dataUpper.py

// Divide your data set(Just use it in Phase I)
use cut.py

Put the enhanced data into the folder "./data" for training

python main.py

Test your model and draw ROC performance graph

python test.py
cd ./draw
./show.bat

// if you want to test all test data
// change ONLY_VAL = 0 in test.py

others

We found that the final score is closely related to the accuracy of face alignment

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages