Open Deep Realtime User Welcoming Assistant
Realtime face detection & verification using Webcam.
contact: [email protected]
- cmake / gcc,g++ / python 2.7 / pip
- CUDA/CUDNN
- REDIS Server / hiredis / PyRedis
- OpenCV2 or OpenCV3 for support CUDA
- Note) You can install libopencv-dev. But cpu only.
- Darknet
- C/C++ dnn framework
- Openface
- You can user docker image which does not support gpgpu
- Torch
- Case of building Native Openface
- dlib
- NVidia Wed Site.
- CUDA 8.0 / CUDNN 5.1(tested), CUDNN 6.0(tested)
Change current directory to RealtimeCamera
Run install_packages.sh
Run setup.sh
Run Redis Server
Admit external access(Edit redis.conf)
Remember server ip and port
Run face_detector/run_camera.sh
Edit run_camera.sh argument
bin/darknet yolo camera cfg/yolo-face.cfg models/face.weights this_server_ip redis_server_ip
Edit face_recognizer/cascaded_recognizer.py
HOST, PORT = "10.100.1.152", 55555 -> face_detector server
REDIS_SERVER = '10.100.1.150' -> Redis Server
REDIS_PORT = 6379
Run face_recognizer/cuda_recognizer.sh
face_detector
extractor
YOLO based on darknet
Camera Control based on OpenCV
Face data redis publish
identifier
Person label(eg.name) selection
Face tracking
face_recognizer
Face data redis subscriber
Face alignment with dlib python
Vector distance checker
DBN classifier inference
SVM classifier inference
TTS engine(Google Voice)
face_register
Supervised image training
DBN with LDA dimension reduction
SVM(RBF) fine tunning
robot
Arduino controller(Door open)
node.js event receiver
Input data
Place face images in face_register/input/user
input/user
First target class
input/iguest
Second target class
Run face_register/train.sh
TDB