Skip to content

SoniaBadene/irit-stac

 
 

Repository files navigation

This is the STAC codebase.

Prerequisites

  1. git (to keep up with educe/attelo changes)
  2. Anaconda or miniconda (conda --version should say 2.2.6 or higher)
  3. STAC corpus (released separately)

Installation (basics, development mode)

Both educe and attelo supply requirements.txt files which can be processed by pip.

  1. Linux users: (Debian/Ubuntu) (NB: this step may be obsoleted by requiring conda)

     sudo apt-get install python-dev libyaml-dev
    
  2. Fetch the irit-stac code if you have not done so already

     git clone https://github.com/irit-melodi/irit-stac.git
     cd irit-stac
    
  3. Create a sandbox environment. We assume you will be using Anaconda or miniconda. Once you have installed it, you should be able to create the environment with

     conda env create
    

    If that doesn't work, make sure your anaconda version is up to date, and the conda bin directory is in your path (it might be installed in /anaconda instead of $HOME/anaconda).

  4. Switch into your STAC sandbox

     source activate irit-stac
    

    Note that whenever you want to use STAC things, you would need to run this command.

  5. Install the irit-stac code in development mode. This should automatically fetch the educe/attelo dependencies.

     pip install -r requirements.txt
    

    At this point, if somebody tells you to update the STAC code, it should be possible to just git pull and maybe pip install -r requirements.txt again if attelo/educe need to be updated. No further installation will be needed.

  6. Install NLTK data files

     python setup-nltk.py
    
  7. Link the STAC corpus in (STAC has not yet been released, so here the directory "Stac" refers to the STAC SVN directory)

     ln -s /path/to/Stac/data data
    

Full installation (Toulouse/Edinburgh)

You only need to do this if you intend to use the irit-stac parse or irit-stac serve command, i.e. if you're participating in discourse parser experiments or integration work between the parsing pipeline and the dialogue manager.

  1. Do the basic install above.

  2. Download tweet-nlp part of speech tagger and put the jar file (ark-tweet- in the lib/ directory (ie. on the STAC SVN root at the same level as code/ and data/).

  3. Download and install corenlp-server (needs Apache Maven!)

     cd irit-stac
     mkdir lib
     cd lib
     git clone https://github.com/kowey/corenlp-server
     cd corenlp-server
     mvn package
    

Usage (Toulouse)

Running the pieces of infrastructure here should consist of running irit-stac <subcommand> from the STAC SVN root.

Folks (likely in Edinburgh) who just want to run the parsing pipeline server should skip this section and go to "Usage (Edinburgh)" instead.

Basics

Using the harness consists of two steps, gathering the features, and running the n-fold cross validation loop

irit-stac gather
irit-stac evaluate

If you stop an evaluation (control-C) in progress, you can resume it by running

irit-stac evaluate --resume

The harness will try to detect what work it has already done and pick up where it left off.

Configuration

There is a small configuration module that you can edit in stac/harness/local.py

It lets you control things such as which corpora to run on, which decoders and learners to try, and how to do feature extraction.

It tries to be self-documenting.

Standalone parser

You can also use this infrastructure to parse new soclog files, using models built from features you have collected.

irit-stac gather
irit-stac model
irit-stac parse code/parser/sample.soclog /tmp/parser-output

Scores and reports

You can get a sense of how things are going by inspecting the various intermediary results:

  1. output files: Outputs for any decoders in a fold that happen to have finished running (for a given fold N, see TMP/latest/scratch-current/fold-N/output.*),

  2. fold reports : At the end of each fold, we will summarise all of the counts into a simple Precision/Recall/F1 report for attachment and labelling (for a given fold N, see TMP/latest/scratch-current/fold-N/reports-*),

  3. full reports: If we make it through the entire experiment, we will produce a cross-validation summary combining the counts from all folds and several other things (TMP/latest/eval-current/reports-*).

Cleanup

The harness produces a lot of output, and can take up potentially a lot of disk space in the process. If you have saved results you want to keep, you can run the command

irit-stac clean

This will delete all scratch directories, along with any evaluation directories that look incomplete (no scores).

Output files

There are two main directories for output:

  • The data/SNAPSHOTS directory is meant for intermediary results that you want to save. You have to copy files into here manually (more on that later). Because this directory can take up space, it does not feel quite right to dump it on the public GitHub repo. We'll need to think about where to store our snapshots later (possibly some IRIT-local SVN?).

  • The TMP directory is where the test harness does all its work. Each TMP/<timestamp> directory corresponds to a set of feature files generated by irit-stac gather. For convenience, the harness will maintain a TMP/latest symlink pointing to one of these directories.

Within the each feature directory, we can have a number of evaluation and scratch directories. This layout is motivated by us wanting to suppport ongoing changes to our learning/decoding algorithms independently of feature collection. So the thinking is that we may have multiple evaluations for any given set of features. Like the feature directories, these are named by timestamp (with eval-current and scratch-current symlinks for convenience).

  • scratch directories: these are considered relatively ephemeral (hence them being deleted by irit-stac clean). They contain all the models and counts saved by harness during evaluation.

  • eval directories: these contain things we would consider more essential for reproducing an evaluation. They contain the feature files (hardlinked from the parent dir) along with the fold listing and the cross-fold validation scores. If you hit any interesting milestones in development, it may be good to manually copy the eval directory to SNAPSHOTS, maybe with a small README explaining what it is, or at least a vaguely memorable name. This directory should be fairly self-contained.

Usage (Edinburgh)

First make sure that the standalone parser works for you

irit-stac parse code/parser/sample.soclog /tmp/parser-output

The parsing pipeline server has the same function as the standalone parser but accepts inputs and sends outputs back over a network connection

irit-stac server --port 7777

Note that if you launch

irit-stac server --port 7777 --incremental

The server will assume that every connection is appending to an input in progress, and will generate a new output based on the extended input (you'll have to restart the server for new inputs)

About

IRIT experiments on the STAC corpus

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 96.1%
  • Shell 2.6%
  • Other 1.3%