-
Notifications
You must be signed in to change notification settings - Fork 5
Method Spatial-MGCN #212
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Open
kbiharie
wants to merge
14
commits into
main
Choose a base branch
from
method_Spatial-mgcn_divyasitani
base: main
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Open
Method Spatial-MGCN #212
Changes from 13 commits
Commits
Show all changes
14 commits
Select commit
Hold shift + click to select a range
67e7da8
Create Spatial_mgcn.py
Divya1205 7e397a4
Create method.py
Divya1205 0f51175
Rename method/Spatial_mgcn.py to method/Spatial_mgcn/Spatial_mgcn.py
Divya1205 41c89c4
Delete method/Spatial_mgcn/method.py
Divya1205 99e4336
Create Spatial_mgcn.yml
Divya1205 e7e11b0
Update Spatial_mgcn.py
Divya1205 6676eee
Update Spatial_mgcn.yml
Divya1205 d326460
Rename Spatial_mgcn.py to Spatial-mgcn.py
Divya1205 edb9c96
Rename Spatial-mgcn.py to Spatial-mgcn.py
Divya1205 336109d
Rename Spatial_mgcn.yml to Spatial-mgcn.yml
Divya1205 bb677d0
Update Spatial-mgcn.yml
Divya1205 160c2ff
Add implementation for Spatial-MGCN
kbiharie 7205064
Add optargs.json
kbiharie f3a8e97
Update yml and use standard preprocessing
kbiharie File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,254 @@ | ||
#!/usr/bin/env python | ||
|
||
# Author_and_contribution: Niklas Mueller-Boetticher; created script | ||
# Author_and_contribution: Kirti Biharie; Added Spatial-MGCN | ||
|
||
import argparse | ||
|
||
CALC_ARI = False | ||
|
||
parser = argparse.ArgumentParser( | ||
description="""Spatial-MGCN (https://doi.org/10.1093/bib/bbad262)""" | ||
) | ||
|
||
parser.add_argument( | ||
"-c", "--coordinates", help="Path to coordinates (as tsv).", required=True | ||
) | ||
parser.add_argument( | ||
"-m", "--matrix", help="Path to (transformed) counts (as mtx).", required=False | ||
) | ||
parser.add_argument( | ||
"-f", "--features", help="Path to features (as tsv).", required=True | ||
) | ||
parser.add_argument( | ||
"-o", "--observations", help="Path to observations (as tsv).", required=True | ||
) | ||
parser.add_argument( | ||
"-n", | ||
"--neighbors", | ||
help="Path to neighbor definitions. Square matrix (not necessarily symmetric) where each row contains the neighbors of this observation (as mtx).", | ||
required=False, | ||
) | ||
parser.add_argument("-d", "--out_dir", help="Output directory.", required=True) | ||
parser.add_argument( | ||
"--dim_red", | ||
help="Reduced dimensionality representation (e.g. PCA).", | ||
required=False, | ||
) | ||
parser.add_argument("--image", help="Path to H&E staining.", required=False) | ||
parser.add_argument( | ||
"--n_clusters", help="Number of clusters to return.", required=True, type=int | ||
) | ||
parser.add_argument( | ||
"--technology", | ||
help="The technology of the dataset (Visium, ST, ...).", | ||
required=True, | ||
) | ||
parser.add_argument( | ||
"--seed", help="Seed to use for random operations.", required=True, type=int | ||
) | ||
parser.add_argument( | ||
"--config", | ||
help="Optional config file used to pass additional parameters.", | ||
required=False, | ||
) | ||
|
||
# Uncomment to calculate ARI every epoch as in original implementation | ||
if CALC_ARI: | ||
parser.add_argument( | ||
"-g", "--groundtruth", | ||
help="Groundtruth.", | ||
required=False, | ||
) | ||
|
||
args = parser.parse_args() | ||
|
||
from pathlib import Path | ||
|
||
out_dir = Path(args.out_dir) | ||
|
||
# Output files | ||
label_file = out_dir / "domains.tsv" | ||
embedding_file = out_dir / "embedding.tsv" | ||
|
||
n_clusters = args.n_clusters | ||
technology = args.technology | ||
seed = args.seed | ||
|
||
## Your code goes here | ||
import json | ||
|
||
with open(args.config, "r") as f: | ||
config = json.load(f) | ||
|
||
import random | ||
import numpy as np | ||
import pandas as pd | ||
import torch | ||
import tempfile | ||
import os | ||
import sys | ||
import scanpy as sc | ||
import scipy as sp | ||
import torch.optim | ||
import sklearn.cluster | ||
import sklearn.metrics | ||
import tqdm | ||
|
||
def get_anndata(args): | ||
import anndata as ad | ||
|
||
from PIL import Image | ||
import scipy.io | ||
|
||
X = sp.io.mmread(args.matrix) | ||
if sp.sparse.issparse(X): | ||
X = X.tocsr() | ||
|
||
observations = pd.read_table(args.observations, index_col=0) | ||
features = pd.read_table(args.features, index_col=0) | ||
|
||
# Filter | ||
if "selected" in observations.columns: | ||
X = X[observations["selected"].to_numpy().nonzero()[0], :] | ||
observations = observations.loc[lambda df: df["selected"]] | ||
if "selected" in features.columns: | ||
X = X[:, features["selected"].to_numpy().nonzero()[0]] | ||
features = features.loc[lambda df: df["selected"]] | ||
|
||
coordinates = ( | ||
pd.read_table(args.coordinates, index_col=0) | ||
.loc[observations.index, :] | ||
.to_numpy() | ||
) | ||
|
||
adata = ad.AnnData( # Rename spatial_pixel to spatial for Spatial-mgcn | ||
X=X, obs=observations, var=features, obsm={"spatial": coordinates} | ||
) | ||
|
||
if args.image is not None: | ||
adata.uns["image"] = np.array(Image.open(args.image)) | ||
else: | ||
adata.uns["image"] = None | ||
|
||
return adata | ||
|
||
|
||
adata = get_anndata(args) | ||
|
||
if CALC_ARI: | ||
labels = pd.read_table(args.groundtruth, index_col=0) | ||
adata = adata[adata.obs_names.isin(labels.index)] | ||
labels = labels.loc[adata.obs_names] | ||
|
||
# Set seed | ||
random.seed(seed) | ||
torch.manual_seed(seed) | ||
np.random.seed(seed) | ||
torch.cuda.manual_seed(seed) | ||
|
||
# Work in a temprary folder | ||
with tempfile.TemporaryDirectory() as tmpdir: | ||
gitdir = f"{str(tmpdir)}/Spatial-MGCN" | ||
|
||
# Clone the repository to the specific commit | ||
os.system( | ||
f""" | ||
git clone https://github.com/cs-wangbo/Spatial-MGCN.git {gitdir} | ||
cd {gitdir} | ||
git reset --hard cf4412d | ||
""") | ||
|
||
# Set working directory as Spatial-MGCN directory | ||
sys.path.append(f"{gitdir}/Spatial-MGCN") | ||
import utils | ||
import models | ||
|
||
# Normalize data: min_cells, calculate HVG and scale | ||
sc.pp.filter_genes(adata, min_cells=100) | ||
sc.pp.highly_variable_genes(adata, flavor="seurat_v3", n_top_genes=config["fdim"]) | ||
adata = adata[:, adata.var['highly_variable']].copy() | ||
adata.X = adata.X / np.sum(adata.X, axis=1).reshape(-1, 1) * 10000 | ||
adata.X = sp.sparse.csr_matrix(adata.X) | ||
sc.pp.scale(adata, zero_center=False, max_value=10) | ||
|
||
# Calculate graphs | ||
fadj = utils.features_construct_graph(adata.X, k=config["k"]) | ||
sadj, graph_nei, graph_neg = utils.spatial_construct_graph1(adata, radius=config["radius"]) | ||
|
||
adata.obsm["fadj"] = fadj | ||
adata.obsm["sadj"] = sadj | ||
adata.obsm["graph_nei"] = graph_nei.numpy() | ||
adata.obsm["graph_neg"] = graph_neg.numpy() | ||
|
||
features = torch.FloatTensor(adata.X.todense()) | ||
|
||
nfadj = utils.normalize_sparse_matrix(fadj + sp.eye(fadj.shape[0])) | ||
nfadj = sp.sparse.csr_matrix(nfadj) | ||
nfadj = utils.sparse_mx_to_torch_sparse_tensor(nfadj) | ||
|
||
nsadj = utils.normalize_sparse_matrix(sadj + sp.eye(sadj.shape[0])) | ||
nsadj = sp.sparse.csr_matrix(nsadj) | ||
nsadj = utils.sparse_mx_to_torch_sparse_tensor(nsadj) | ||
|
||
graph_nei = torch.LongTensor(adata.obsm['graph_nei']) | ||
graph_neg = torch.LongTensor(adata.obsm['graph_neg']) | ||
|
||
# Create model | ||
cuda = torch.cuda.is_available() | ||
|
||
if cuda: | ||
features = features.cuda() | ||
nsadj = nsadj.cuda() | ||
nfadj = nfadj.cuda() | ||
graph_nei = graph_nei.cuda() | ||
graph_neg = graph_neg.cuda() | ||
|
||
model = models.Spatial_MGCN(nfeat=config["fdim"], | ||
nhid1=config["nhid1"], | ||
nhid2=config["nhid2"], | ||
dropout=config["dropout"]) | ||
|
||
if cuda: | ||
model.cuda() | ||
|
||
optimizer = torch.optim.Adam(model.parameters(), lr=config["lr"], weight_decay=config["weight_decay"]) | ||
|
||
# Train model | ||
epoch_max = 0 | ||
ari_max = 0 | ||
idx_max = [] | ||
mean_max = [] | ||
emb_max = [] | ||
|
||
for epoch in tqdm.tqdm(range(config["epochs"])): | ||
model.train() | ||
optimizer.zero_grad() | ||
com1, com2, emb, pi, disp, mean = model(features, nsadj, nfadj) | ||
zinb_loss = utils.ZINB(pi, theta=disp, ridge_lambda=0).loss(features, mean, mean=True) | ||
reg_loss = utils.regularization_loss(emb, graph_nei, graph_neg) | ||
con_loss = utils.consistency_loss(com1, com2) | ||
total_loss = config["alpha"] * zinb_loss + config["beta"] * con_loss + config["gamma"] * reg_loss | ||
emb = pd.DataFrame(emb.cpu().detach().numpy()).fillna(0).values | ||
total_loss.backward() | ||
optimizer.step() | ||
|
||
kmeans = sklearn.cluster.KMeans(n_clusters=args.n_clusters, n_init=10).fit(emb) | ||
idx = kmeans.labels_ | ||
|
||
if CALC_ARI: | ||
ari_res = sklearn.metrics.adjusted_rand_score(labels.to_numpy()[:,0], idx) | ||
if ari_res > ari_max: | ||
ari_max = ari_res | ||
idx_max = idx | ||
emb_max = emb | ||
else: | ||
idx_max = idx | ||
emb_max = emb | ||
|
||
# Write output | ||
emb_df = pd.DataFrame(emb_max, index=adata.obs_names) | ||
label_df = pd.DataFrame(idx_max, index=adata.obs_names, columns=["label"]) | ||
|
||
emb_df.to_csv(embedding_file, sep="\t", index_label="") | ||
label_df.to_csv(label_file, sep="\t", index_label="") |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
channels: | ||
- conda-forge | ||
- defaults | ||
dependencies: | ||
- python=3.8.13 | ||
- numpy=1.22.0 | ||
- pandas=1.4.4 | ||
- scipy=1.8.1 | ||
- matplotlib=3.5.3 | ||
- pytorch=1.11.0 | ||
- pip | ||
- pip: | ||
- stlearn==0.4.12 | ||
- torch_geometric==2.1.0 | ||
- torch_sparse==0.6.15 | ||
- torch_scatter==2.0.9 | ||
- git+https://github.com/cs-wangbo/Spatial-MGCN@cf4412df6db6276e0c8a3f036ff0b1661adfdb35 | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. If it can be installed via pip why is the repo cloned during the run? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It cannot be installed via pip. I updated the yml |
||
- python-louvain==0.16 | ||
- scikit-misc==0.2.0 |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,7 @@ | ||
{ | ||
"matrix": "counts", | ||
"integrated_feature_selection": true, | ||
"image": false, | ||
"neighbors": false, | ||
"config_file": true | ||
} |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,14 @@ | ||
{ | ||
"epochs": 200, | ||
"lr": 0.001, | ||
"weight_decay": 5e-4, | ||
"k": 14, | ||
"radius": 560, | ||
"nhid1": 128, | ||
"nhid2": 64, | ||
"dropout": 0, | ||
"alpha": 1, | ||
"beta": 10, | ||
"gamma": 0.1, | ||
"fdim": 3000 | ||
} |
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Is there a reason not to use existing feature selection?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I changed it to the existing feature selection now. But I left their feature selection as comments to make it easier to compare the performance of both ways.