What is "Big O notation" and "time complexity"?
Code examples demonstrating the following complexity classes:
- O(1) - constant time (inserting elements at the beginning of a linked list)
- O(n) - linear time (summing up all elements of an array)
- O(n²) - quadratic time (sorting an array with Insertion Sort)
- O(log n) - logarithmic time (finding an element within a sorted array using binary search)
- O(n log n) - quasi-linear time (sorting an array with Quicksort)
The code belongs to this article:
- English: Big O Notation and Time Complexity – Easily Explained
- German: O-Notation und Zeitkomplexität – anschaulich erklärt
With this 1-page PDF cheat sheet, you'll always have the 7 most important complexity classes at a glance.
- Always choose the most efficient data structures and thus increase the performance of your applications.
- Be prepared for technical interviews and confidently present your algorithm knowledge.
- Become a sought-after problem solver and be known for systematically tackling complex problems.
👉 Download the Big O Cheat Sheet
(Hier geht's zur deutschen Version → O-Notation Cheat Sheet)
Stay up-to-date with the latest Java features with this PDF Cheat Sheet!
- Avoid lengthy research with this concise overview of all Java versions up to Java 23.
- Discover the innovative features of each new Java version, summarized on a single page.
- Impress your team with your up-to-date knowledge of the latest Java version.
👉 Download the Java Versions PDF
(Hier geht's zur deutschen Version → Java-Versionen PDF)
👉 Want to level up your Java skills? Sign up for the HappyCoders newsletter and get regular tips on programming, algorithms, and data structures!
(Hier geht's zur deutschen Version → HappyCoders-Newsletter deutsch)
🇩🇪 An alle Java-Programmierer, die durch fundierte Kenntnisse über Datenstrukturen besseren Code schreiben wollen
Trage dich jetzt auf die Warteliste von „Mastering Data Structures in Java“ ein, und erhalte das beste Angebot!