Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
140 changes: 140 additions & 0 deletions cogdl/models/nn/jkn.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
import math

import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn.parameter import Parameter

from .. import BaseModel, register_model
from cogdl.utils import add_remaining_self_loops, spmm, spmm_adj


class GraphConvolution(nn.Module):
"""
Simple GCN layer, similar to https://arxiv.org/abs/1609.02907
"""

def __init__(self, in_features, out_features, bias=True):
super(GraphConvolution, self).__init__()
self.in_features = in_features
self.out_features = out_features
self.weight = Parameter(torch.FloatTensor(in_features, out_features))
if bias:
self.bias = Parameter(torch.FloatTensor(out_features))
else:
self.register_parameter("bias", None)
self.reset_parameters()

def reset_parameters(self):
stdv = 1.0 / math.sqrt(self.weight.size(1))
self.weight.data.uniform_(-stdv, stdv)
if self.bias is not None:
self.bias.data.zero_()

def forward(self, input, edge_index, edge_attr=None):
if edge_attr is None:
edge_attr = torch.ones(edge_index.shape[1]).float().to(input.device)
adj = torch.sparse_coo_tensor(
edge_index,
edge_attr,
(input.shape[0], input.shape[0]),
).to(input.device)
support = torch.mm(input, self.weight)
output = torch.spmm(adj, support)
if self.bias is not None:
return output + self.bias
else:
return output

def __repr__(self):
return (
self.__class__.__name__
+ " ("
+ str(self.in_features)
+ " -> "
+ str(self.out_features)
+ ")"
)


@register_model("jkn")
class JKN(BaseModel):
r"""The GCN model from the `"Semi-Supervised Classification with Graph Convolutional Networks"
<https://arxiv.org/abs/1609.02907>`_ paper

Args:
num_features (int) : Number of input features.
num_classes (int) : Number of classes.
hidden_size (int) : The dimension of node representation.
dropout (float) : Dropout rate for model training.
"""

@staticmethod
def add_args(parser):
"""Add model-specific arguments to the parser."""
# fmt: off
parser.add_argument("--num-features", type=int)
parser.add_argument("--num-classes", type=int)
parser.add_argument("--n-layers", type=int, default=2)
parser.add_argument("--hidden-size", type=int, default=256)
parser.add_argument("--dropout", type=float, default=0.5)
parser.add_argument("--link-type", type=str, default='max_pool', choices=['max_pool', 'concat'])
# fmt: on

@classmethod
def build_model_from_args(cls, args):
return cls(args.num_features, args.hidden_size, args.num_classes, args.n_layers, args.dropout, args.link_type)

def __init__(self, nfeat, nhid, nclass, n_layers, dropout, link_type):
super(JKN, self).__init__()
self.n_layers = n_layers
self.link_type = link_type

self.gconv0 = GraphConvolution(nfeat, nhid)
self.dropout0 = torch.nn.Dropout(dropout)

for i in range(1, self.n_layers):
setattr(self, 'gconv{}'.format(i),
GraphConvolution(nhid, nhid))
setattr(self, 'dropout{}'.format(i), torch.nn.Dropout(0.5))

if self.link_type is 'max_pool':
self.last_linear = torch.nn.Linear(nhid, nclass)
else:
self.last_linear = torch.nn.Linear(nhid * self.n_layers, nclass)

self.dropout = dropout
# self.nonlinear = nn.SELU()

def forward(self, x, adj):
outputs = []

device = x.device
adj_values = torch.ones(adj.shape[1]).to(device)
adj, adj_values = add_remaining_self_loops(adj, adj_values, 1, x.shape[0])
deg = spmm(adj, adj_values, torch.ones(x.shape[0], 1).to(device)).squeeze()
deg_sqrt = deg.pow(-1 / 2)
adj_values = deg_sqrt[adj[1]] * adj_values * deg_sqrt[adj[0]]

for i in range(self.n_layers):
dropout = getattr(self, 'dropout{}'.format(i))
gconv = getattr(self, 'gconv{}'.format(i))
x = dropout(F.relu(gconv(x, adj, adj_values)))
outputs.append(x)

if self.link_type is 'max_pool':
h = torch.stack(outputs, dim=0)
h = torch.max(h, dim=0)[0]
else:
h = torch.cat(outputs, dim=1)
h = self.last_linear(h)
return F.log_softmax(h, dim=-1)

def loss(self, data):
return F.nll_loss(
self.forward(data.x, data.edge_index)[data.train_mask],
data.y[data.train_mask],
)

def predict(self, data):
return self.forward(data.x, data.edge_index)
1 change: 1 addition & 0 deletions match.yml
Original file line number Diff line number Diff line change
Expand Up @@ -20,6 +20,7 @@ node_classification:
- gcnii
- gpt_gnn
- jknet
- jkn
- ppnp
- sgcpn
- sgc
Expand Down