Skip to content

Waqas-Khan-CodeCanvas/Placement-Package-Predictor

Repository files navigation

Placement Package Predictor

A minimal CGPA → Salary prediction app built with Flask + scikit-learn.


🚀 Live Deployment

Click below to use the app:

🔗 https://placement-predictor-production.up.railway.app/

Live App



Features

  • Predicts placement package (LPA) from CGPA
  • Fast, single-page UI
  • Clean Bootstrap 5 layout
  • Chart.js visual trends
  • Confetti animation on prediction

Setup

git clone https://github.com/YOUR_NAME/placement_predictor.git
cd placement_predictor

python -m venv venv
source venv/bin/activate   # Windows: venv\Scripts\activate

pip install -r requirements.txt
python app.py

Open: http://127.0.0.1:5000

Project Structure

placement_predictor/
├── app.py                   # Flask routes (home + academic pages)
├── requirements.txt
├── render.yaml
├── placement.csv            # training data
├── model.pkl / scaler.pkl   # auto-generated
├── templates/
│   ├── index.html           # predictor calculator
│   ├── abstract.html        # project summary
│   ├── methodology.html     # data & model flow
│   └── conclusion.html      # results + future work
└── static/
    ├── style.css            # dark theme + confetti
    └── demo1.png / demo2.png

Tech Stack

  • Backend: Flask, scikit-learn, pandas
  • Frontend: Bootstrap 5, Chart.js, vanilla JS, CSS animations
  • Hosting: Render

Customize

  • Change theme colors → static/style.css
  • Swap fonts → index.html
  • Replace dataset → add new placement.csv

Contribute

  • PRs welcome!
  • Found a bug? Open an issue or ping me on Twitter or linkedin

Let's Connect

Made with ❤️ and Flask · MIT License