|
| 1 | + |
| 2 | +import numpy |
| 3 | + |
| 4 | +import vtreat.stats_utils |
| 5 | + |
| 6 | +def test_linear_cor(): |
| 7 | + y_true = [1, 1, 0, 1, 0, 1, 1, 0, 1, 0] |
| 8 | + y_pred = [0.8, 1, 0.2, 0.5, 0.5, 0.8, 1, 0.2, 0.5, 0.5] |
| 9 | + cor, sig = vtreat.stats_utils.our_corr_score(y_true=y_true, y_pred=y_pred) |
| 10 | + # R: |
| 11 | + # y_true = c(1, 1, 0, 1, 0, 1, 1, 0, 1, 0) |
| 12 | + # y_pred = c(0.8, 1, 0.2, 0.5, 0.5, 0.8, 1, 0.2, 0.5, 0.5) |
| 13 | + # summary(lm(y_true ~ y_pred)) |
| 14 | + # Multiple R-squared: 0.5482, Adjusted R-squared: 0.4918 |
| 15 | + # F-statistic: 9.709 on 1 and 8 DF, p-value: 0.01432 |
| 16 | + assert numpy.abs(cor*cor - 0.5482) < 1.0e-2 |
| 17 | + assert numpy.abs(sig - 0.01432) < 1.0e-2 |
| 18 | + |
| 19 | + |
| 20 | + |
| 21 | +def test_logistic_r2(): |
| 22 | + if not vtreat.stats_utils.have_sklearn: |
| 23 | + return |
| 24 | + y_true = [1, 1, 0, 0, 0, 1, 1, 0, 1, 1] |
| 25 | + y_pred = [0.8, 1, 1, 0.5, 0.5, 0.8, 1, 0.2, 0.5, 0.5] |
| 26 | + # R: |
| 27 | + # y_true = c(1, 1, 0, 0, 0, 1, 1, 0, 1, 1) |
| 28 | + # y_pred = c(0.8, 1, 1, 0.5, 0.5, 0.8, 1, 0.2, 0.5, 0.5) |
| 29 | + # (s <- summary(glm(y_true ~ y_pred, family = binomial()))) |
| 30 | + # Null deviance: 13.460 on 9 degrees of freedom |
| 31 | + # Residual deviance: 11.762 on 8 degrees of freedom |
| 32 | + # (w <- sigr::wrapChiSqTest(s)) |
| 33 | + # Chi-Square Test summary: pseudo-R2=0.1262 (X2(1,N=10)=1.698, p=n.s.). |
| 34 | + # w$pValue |
| 35 | + # [1] 0.1925211 |
| 36 | + check_r2 = 1 - 11.762/13.460 |
| 37 | + r2, sig = vtreat.stats_utils.our_pseudo_R2(y_true=y_true, y_pred=y_pred) |
| 38 | + assert numpy.abs(r2 - check_r2) < 1.0e-2 |
| 39 | + assert numpy.abs(r2 - 0.1262) < 1.0e-2 |
| 40 | + assert numpy.abs(sig - 0.1925211) < 1.0e-2 |
| 41 | + pass |
0 commit comments