-
Notifications
You must be signed in to change notification settings - Fork 107
/
Copy pathaie2.py
304 lines (272 loc) · 11.4 KB
/
aie2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
#
# This file is licensed under the Apache License v2.0 with LLVM Exceptions.
# See https://llvm.org/LICENSE.txt for license information.
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
#
# (c) Copyright 2023 AMD Inc.
from aie.dialects.aie import *
from aie.dialects.aiex import *
from aie.dialects.scf import *
from aie.extras.context import mlir_mod_ctx
def my_matmul():
M = 256
K = 256
N = 256
m = 64
k = 64
n = 64
r = 4
s = 8
t = 4
word_size_in = 2
word_size_out = 2
vectorized = True
enable_tracing = False
trace_size = 16384
A_sz_in_i32s = M * K * word_size_in // 4
B_sz_in_i32s = K * N * word_size_in // 4
C_sz_in_bytes = M * N * word_size_out
C_sz_in_i32s = C_sz_in_bytes // 4
M_div_m = M // m
K_div_k = K // k
N_div_n = N // n
tiles = M_div_m * N_div_n
# Matrix A: MxK, submatrices a: mxk
k_in_i32s = k * word_size_in // 4
K_in_i32s = K * word_size_in // 4
# Matrix B: KxN, submatrices b: kxn
n_in_i32s = n * word_size_in // 4
N_in_i32s = N * word_size_in // 4
k_x_N_in_i32s = k * N * word_size_in // 4
# Output Matrix C: MxN
n_in_i32s_out = n * word_size_out // 4
N_in_i32s_out = N * word_size_out // 4
m_x_N_in_i32s_out = m * N * word_size_out // 4
with mlir_mod_ctx() as ctx:
@device(AIEDevice.ipu)
def device_body():
memref_a_ty = T.memref(m, k, T.bf16())
memref_b_ty = T.memref(k, n, T.bf16())
memref_c_ty = T.memref(m, n, T.bf16())
ofifo_memref_a_ty = TypeAttr.get(ObjectFifoType.get(memref_a_ty))
ofifo_memref_b_ty = TypeAttr.get(ObjectFifoType.get(memref_b_ty))
ofifo_memref_c_ty = TypeAttr.get(ObjectFifoType.get(memref_c_ty))
# AIE Core Function declarations
zero_scalar = external_func("zero_scalar_bf16", inputs=[memref_c_ty])
zero = external_func("zero_bf16", inputs=[memref_c_ty])
matmul_scalar = external_func(
"matmul_scalar_bf16_bf16",
inputs=[memref_a_ty, memref_b_ty, memref_c_ty],
)
matmul = external_func(
"matmul_bf16_bf16", inputs=[memref_a_ty, memref_b_ty, memref_c_ty]
)
# Tile declarations
shim_tile = tile(0, 0)
mem_tile = tile(0, 1)
compute_tile2_col, compute_tile2_row = 0, 2
compute_tile2 = tile(compute_tile2_col, compute_tile2_row)
# AIE-array data movement with object fifos
# Input A
inA = object_fifo("inA", shim_tile, mem_tile, 2, memref_a_ty)
memA = object_fifo(
"memA",
mem_tile,
compute_tile2,
2,
memref_a_ty,
[
(m // r, r * k * word_size_in // 4),
(k // s, s * word_size_in // 4),
(r, k * word_size_in // 4),
(s * word_size_in // 4, 1),
],
)
object_fifo_link(inA, memA)
# Input B
inB = object_fifo("inB", shim_tile, mem_tile, 2, memref_b_ty)
memB = object_fifo(
"memB",
mem_tile,
compute_tile2,
2,
memref_b_ty,
[
(k // s, s * n * word_size_in // 4),
(n // t, t * word_size_in // 4),
(s, n * word_size_in // 4),
(t * word_size_in // 4, 1),
],
)
object_fifo_link(inB, memB)
# Output C
memC = object_fifo("memC", compute_tile2, mem_tile, 2, memref_c_ty)
outC = object_fifo(
"outC",
mem_tile,
shim_tile,
2,
memref_c_ty,
[
(m // r, r * n * word_size_out // 4),
(r, t * word_size_out // 4),
(n // t, r * t * word_size_out // 4),
(t * word_size_out // 4, 1),
],
)
object_fifo_link(memC, outC)
# Set up a circuit-switched flow from core to shim for tracing information
if enable_tracing:
flow(compute_tile2, WireBundle.Trace, 0, shim_tile, WireBundle.DMA, 1)
# Set up compute tiles
# Compute tile 2
@core(compute_tile2, "mm.o")
def core_body():
for _ in for_(0xFFFFFFFF):
for _ in for_(tiles):
elem_out = memC.acquire(ObjectFifoPort.Produce, 1)
if vectorized:
call(zero, [elem_out])
else:
call(zero_scalar, [elem_out])
for _ in for_(K_div_k):
elem_in_a = memA.acquire(ObjectFifoPort.Consume, 1)
elem_in_b = memB.acquire(ObjectFifoPort.Consume, 1)
if vectorized:
call(matmul, [elem_in_a, elem_in_b, elem_out])
else:
call(matmul_scalar, [elem_in_a, elem_in_b, elem_out])
memA.release(ObjectFifoPort.Consume, 1)
memB.release(ObjectFifoPort.Consume, 1)
yield_([])
memC.release(ObjectFifoPort.Produce, 1)
yield_([])
yield_([])
# To/from AIE-array data movement
@FuncOp.from_py_func(
T.memref(A_sz_in_i32s, T.i32()),
T.memref(B_sz_in_i32s, T.i32()),
T.memref(C_sz_in_i32s, T.i32()),
)
def sequence(A, B, C):
# Configure tracing, see https://github.com/Xilinx/mlir-aie/blob/resnet/docs/Tracing.md
if enable_tracing:
# 0x340D0: Trace Control 0
# 0xAABB---C
# AA <- Event to stop trace capture
# BB <- Event to start trace capture
# C <- Trace mode, 00=event=time, 01=event-PC, 10=execution
# Configure so that "Event 1" (always true) causes tracing to start
ipu_write32(
column=compute_tile2_col,
row=compute_tile2_row,
address=0x340D0,
value=0x00010000,
)
# 0x340D4: Trace Control 1
ipu_write32(
column=compute_tile2_col,
row=compute_tile2_row,
address=0x340D4,
value=0x00000000,
)
# 0x340E0: Trace Event Group 1 (Which events to trace)
# 0xAABBCCDD AA, BB, CC, DD <- four event slots
ipu_write32(
column=compute_tile2_col,
row=compute_tile2_row,
address=0x340E0,
value=0x4B222125,
)
# 0x340E4: Trace Event Group 2 (Which events to trace)
# 0xAABBCCDD AA, BB, CC, DD <- four event slots
ipu_write32(
column=compute_tile2_col,
row=compute_tile2_row,
address=0x340E4,
value=0x2D2C1A4F,
)
ipu_write32(
column=compute_tile2_col,
row=compute_tile2_row,
address=0x3FF00,
value=0x00000121,
)
# Configure a buffer descriptor to write tracing information that has been routed into this shim tile
# out to host DDR memory
trace_bd_id = 13 # use BD 13 for writing trace output from compute tile to DDR host memory
output_size = C_sz_in_bytes
ipu_writebd_shimtile(
bd_id=trace_bd_id,
buffer_length=trace_size,
buffer_offset=output_size,
enable_packet=0,
out_of_order_id=0,
packet_id=0,
packet_type=0,
column=0,
column_num=1,
d0_size=0,
d0_stride=0,
d1_size=0,
d1_stride=0,
d2_stride=0,
ddr_id=2,
iteration_current=0,
iteration_size=0,
iteration_stride=0,
lock_acq_enable=0,
lock_acq_id=0,
lock_acq_val=0,
lock_rel_id=0,
lock_rel_val=0,
next_bd=0,
use_next_bd=0,
valid_bd=1,
)
# Set start BD to our shim bd_Id (3)
ipu_write32(column=0, row=0, address=0x1D20C, value=trace_bd_id)
# only do 5 tile rows at a time before synchronizing, so we can reuse BDs
rows_per_block = 5
for tile_row_block in range(
(M_div_m + rows_per_block - 1) // rows_per_block
):
C_row_offset_in_i32s = (
tile_row_block * rows_per_block * m * N * word_size_out // 4
)
num_tile_rows = min(
[rows_per_block, M_div_m - tile_row_block * rows_per_block]
)
ipu_dma_memcpy_nd(
metadata="outC",
bd_id=0,
mem=C,
offsets=[0, 0, 0, C_row_offset_in_i32s],
sizes=[num_tile_rows, N_div_n, m, n_in_i32s_out],
strides=[m_x_N_in_i32s_out, n_in_i32s_out, N_in_i32s_out],
)
for tile_row in range(num_tile_rows):
A_row_offset_in_i32s = (
((tile_row_block * rows_per_block) + tile_row)
* m
* K
* word_size_in
// 4
)
ipu_dma_memcpy_nd(
metadata="inA",
bd_id=2 * tile_row + 1,
mem=A,
offsets=[0, 0, 0, A_row_offset_in_i32s],
sizes=[N_div_n, K_div_k, m, k_in_i32s],
strides=[0, k_in_i32s, K_in_i32s],
)
ipu_dma_memcpy_nd(
metadata="inB",
bd_id=2 * tile_row + 2,
mem=B,
sizes=[N_div_n, K_div_k, k, n_in_i32s],
strides=[n_in_i32s, k_x_N_in_i32s, N_in_i32s],
)
print(ctx.module)
my_matmul()