Skip to content

a61730607/pytorch-priv

 
 

Repository files navigation

pytorch-priv

Pytorch implementation for Classification, Semantic Segmentation, Pose Estimation and Object Detection

  • Image Classification
  • Semantic Segmentation (progressing...)
  • Object Detection (progressing...)
  • Pose Estimation (progressing...)

Install

Training and Evaluating

For training:

  1. Modify the .yml file in ./cfg/cls/air50-1x64d:
    • the ckpt is used to save the checkpoints   * if you want use cosine learning rate, please set cosine_lr: True, then lr_schedule and gamma will not be used
    • for resuming training, add the model.pth.tar to resume: and modify start_epoch   * rotation, pixel_jitter and grayscale are extra data augmentation, recommended for training complex networks only
  2. Train a network:
    python train_cls.py --cfg ./cfg/cls/air101-1x64d/air50_1x64d_imagenet.yml 
    

For evaluating:

  1. Modify the .yml file in ./cfg/cls/air50-1x64d:
    • add the model.pth.tar to pretrained:
    • set the evaluate: True
  2. Evaluate a network:
    python train_cls.py --cfg ./cfg/cls/air101-1x64d/air50_1x64d_imagenet.yml 
    

Features

Results

ImageNet

Single-crop (224x224) validation error rate is reported.

Network                     Flops (M) Params (M) Top-1 Error (%) Top-5 Error (%)
resnet50-1x64d 4109.4 25.5 22.96 6.54
air50-1x32d 1543.9 9.5 24.99 7.62
air50-1x64d 6148.2 35.9 21.02 5.55
air50-1x80d 9597.9 55.4 ----- ----
air101-1x64d 11722.9 64.4 20.13 5.02

License

pytorch-priv is released under the MIT License (refer to the LICENSE file for details).

Contribute

Feel free to create a pull request if you find any bugs or you want to contribute (e.g., more datasets and more network structures).

About

Pytorch implementation for Classification, Semantic Segmentation and Object Detection

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.7%
  • Shell 0.3%