Pytorch implementation for Classification, Semantic Segmentation, Pose Estimation and Object Detection
- Image Classification
- Semantic Segmentation (progressing...)
- Object Detection (progressing...)
- Pose Estimation (progressing...)
- Install PyTorch>=0.3.0
- Install torchvision>=0.2.0
- Clone recursively
git clone --recursive https://github.com/soeaver/pytorch-priv
- pip install easydict
For training:
- Modify the
.yml
file in./cfg/cls/air50-1x64d
:- the
ckpt
is used to save the checkpoints * if you want use cosine learning rate, please setcosine_lr: True
, thenlr_schedule
andgamma
will not be used - for resuming training, add the
model.pth.tar
toresume:
and modifystart_epoch
*rotation
,pixel_jitter
andgrayscale
are extra data augmentation, recommended for training complex networks only
- the
- Train a network:
python train_cls.py --cfg ./cfg/cls/air101-1x64d/air50_1x64d_imagenet.yml
For evaluating:
- Modify the
.yml
file in./cfg/cls/air50-1x64d
:- add the
model.pth.tar
topretrained:
- set the
evaluate: True
- add the
- Evaluate a network:
python train_cls.py --cfg ./cfg/cls/air101-1x64d/air50_1x64d_imagenet.yml
- Aligned Inception ResNet (AIR)
- Cosine Learning Rate
- Mixup (progressing...)
Single-crop (224x224) validation error rate is reported.
Network | Flops (M) | Params (M) | Top-1 Error (%) | Top-5 Error (%) |
---|---|---|---|---|
resnet50-1x64d | 4109.4 | 25.5 | 22.96 | 6.54 |
air50-1x32d | 1543.9 | 9.5 | 24.99 | 7.62 |
air50-1x64d | 6148.2 | 35.9 | 21.02 | 5.55 |
air50-1x80d | 9597.9 | 55.4 | ----- | ---- |
air101-1x64d | 11722.9 | 64.4 | 20.13 | 5.02 |
pytorch-priv is released under the MIT License (refer to the LICENSE file for details).
Feel free to create a pull request if you find any bugs or you want to contribute (e.g., more datasets and more network structures).