Skip to content

Commit

Permalink
Add config entry to test multiple location params.
Browse files Browse the repository at this point in the history
  • Loading branch information
YalcinerMustafa committed Oct 28, 2024
1 parent 29f901d commit d29d9f0
Showing 1 changed file with 285 additions and 0 deletions.
Original file line number Diff line number Diff line change
@@ -0,0 +1,285 @@
---
__object__: src.explib.base.ExperimentCollection
name: mnist_multiple_digits_poc
experiments:
- &mnist_logNormal_linf_digit_0
__object__: src.explib.hyperopt.HyperoptExperiment
name: mnist_logNormal_linf_digit_2_loc_1
scheduler: &scheduler
__object__: ray.tune.schedulers.ASHAScheduler
max_t: 1000000
grace_period: 1000000
reduction_factor: 2
num_hyperopt_samples: &num_hyperopt_samples 3
gpus_per_trial: &gpus_per_trial 2
cpus_per_trial: &cpus_per_trial 0
tuner_params: &tuner_params
metric: val_loss
mode: min
device: &device cuda
trial_config:
logging:
images: true
"image_shape": [14, 14]
dataset: &dataset
__object__: src.explib.datasets.MnistSplit
scale: true
digit: 2
device: *device
scale_factor: 2
epochs: &epochs 200000
patience: &patience 150
batch_size: &batch_size
__eval__: tune.choice([16, 32])
optim_cfg: &optim
optimizer:
__class__: torch.optim.Adam
params:
lr:
__eval__: tune.loguniform(1e-4, 1e-3)
weight_decay: 0.0
model_cfg:
type:
__class__: &model src.veriflow.flows.NiceFlow
params:
soft_training: true
training_noise_prior:
__object__: pyro.distributions.Uniform
low:
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20
high:
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01
prior_scale: 5.0
coupling_layers: &coupling_layers
__eval__: tune.choice([i for i in range(3, 4)])
coupling_nn_layers: &coupling_nn_layers
__eval__: "tune.choice([[w] * l for l in [1] for w in [294]])"
nonlinearity: &nonlinearity
__eval__: tune.choice([torch.nn.ReLU()])
split_dim: 98
base_distribution:
__object__: src.veriflow.distributions.RadialDistribution
device: *device
p:
__eval__: math.inf
loc:
__eval__: torch.zeros(196).to("cuda")
norm_distribution:
__object__: pyro.distributions.LogNormal
loc:
__eval__: torch.ones(1).to("cuda")
scale:
__eval__: (0.5 * torch.ones(1)).to("cuda")
use_lu: false
- &mnist_logNormal_linf_digit_2_loc_1_2
name: mnist_logNormal_linf_digit_2_loc_1_2
__object__: src.explib.hyperopt.HyperoptExperiment
scheduler: *scheduler
num_hyperopt_samples: *num_hyperopt_samples
gpus_per_trial: *gpus_per_trial
cpus_per_trial: *cpus_per_trial
tuner_params: *tuner_params
device: *device
trial_config:
logging:
images: true
"image_shape": [ 14, 14 ]
dataset:
__object__: src.explib.datasets.MnistSplit
scale: true
digit: 2
device: *device
scale_factor: 2
epochs: *epochs
patience: *patience
batch_size: *batch_size
optim_cfg: *optim
model_cfg:
type:
__class__: *model
params:
soft_training: true
training_noise_prior:
__object__: pyro.distributions.Uniform
low:
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20
high:
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01
prior_scale: 5.0
coupling_layers: *coupling_layers
coupling_nn_layers: *coupling_nn_layers
nonlinearity: *nonlinearity
split_dim: 98
base_distribution:
__object__: src.veriflow.distributions.RadialDistribution
device: *device
p:
__eval__: math.inf
loc:
__eval__: torch.zeros(196).to("cuda")
norm_distribution:
__object__: pyro.distributions.LogNormal
loc:
__eval__: (1.2* torch.ones(1)).to("cuda")
scale:
__eval__: (0.5 * torch.ones(1)).to("cuda")
use_lu: false
- &mnist_logNormal_linf_digit_2_loc_1_4
name: mnist_logNormal_linf_digit_2_loc_1_4
__object__: src.explib.hyperopt.HyperoptExperiment
scheduler: *scheduler
num_hyperopt_samples: *num_hyperopt_samples
gpus_per_trial: *gpus_per_trial
cpus_per_trial: *cpus_per_trial
tuner_params: *tuner_params
device: *device
trial_config:
logging:
images: true
"image_shape": [ 14, 14 ]
dataset:
__object__: src.explib.datasets.MnistSplit
scale: true
digit: 2
device: *device
scale_factor: 2
epochs: *epochs
patience: *patience
batch_size: *batch_size
optim_cfg: *optim
model_cfg:
type:
__class__: *model
params:
soft_training: true
training_noise_prior:
__object__: pyro.distributions.Uniform
low:
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20
high:
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01
prior_scale: 5.0
coupling_layers: *coupling_layers
coupling_nn_layers: *coupling_nn_layers
nonlinearity: *nonlinearity
split_dim: 98
base_distribution:
__object__: src.veriflow.distributions.RadialDistribution
device: *device
p:
__eval__: math.inf
loc:
__eval__: torch.zeros(196).to("cuda")
norm_distribution:
__object__: pyro.distributions.LogNormal
loc:
__eval__: (1.4 * torch.ones(1)).to("cuda")
scale:
__eval__: (0.5 * torch.ones(1)).to("cuda")
use_lu: false
- &mnist_logNormal_linf_digit_2_loc_1_6
name: mnist_logNormal_linf_digit_2_loc_1_6
__object__: src.explib.hyperopt.HyperoptExperiment
scheduler: *scheduler
num_hyperopt_samples: *num_hyperopt_samples
gpus_per_trial: *gpus_per_trial
cpus_per_trial: *cpus_per_trial
tuner_params: *tuner_params
device: *device
trial_config:
logging:
images: true
"image_shape": [ 14, 14 ]
dataset:
__object__: src.explib.datasets.MnistSplit
scale: true
digit: 2
device: *device
scale_factor: 2
epochs: *epochs
patience: *patience
batch_size: *batch_size
optim_cfg: *optim
model_cfg:
type:
__class__: *model
params:
soft_training: true
training_noise_prior:
__object__: pyro.distributions.Uniform
low:
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20
high:
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01
prior_scale: 5.0
coupling_layers: *coupling_layers
coupling_nn_layers: *coupling_nn_layers
nonlinearity: *nonlinearity
split_dim: 98
base_distribution:
__object__: src.veriflow.distributions.RadialDistribution
device: *device
p:
__eval__: math.inf
loc:
__eval__: torch.zeros(196).to("cuda")
norm_distribution:
__object__: pyro.distributions.LogNormal
loc:
__eval__: (1.6 * torch.ones(1)).to("cuda")
scale:
__eval__: (0.5 * torch.ones(1)).to("cuda")
use_lu: false
- &mnist_logNormal_linf_digit_2_loc_1_8
name: mnist_logNormal_linf_digit_2_loc_1_8
__object__: src.explib.hyperopt.HyperoptExperiment
scheduler: *scheduler
num_hyperopt_samples: *num_hyperopt_samples
gpus_per_trial: *gpus_per_trial
cpus_per_trial: *cpus_per_trial
tuner_params: *tuner_params
device: *device
trial_config:
logging:
images: true
"image_shape": [ 14, 14 ]
dataset:
__object__: src.explib.datasets.MnistSplit
scale: true
digit: 2
device: *device
scale_factor: 2
epochs: *epochs
patience: *patience
batch_size: *batch_size
optim_cfg: *optim
model_cfg:
type:
__class__: *model
params:
soft_training: true
training_noise_prior:
__object__: pyro.distributions.Uniform
low:
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20
high:
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01
prior_scale: 5.0
coupling_layers: *coupling_layers
coupling_nn_layers: *coupling_nn_layers
nonlinearity: *nonlinearity
split_dim: 98
base_distribution:
__object__: src.veriflow.distributions.RadialDistribution
device: *device
p:
__eval__: math.inf
loc:
__eval__: torch.zeros(196).to("cuda")
norm_distribution:
__object__: pyro.distributions.LogNormal
loc:
__eval__: (1.8 * torch.ones(1)).to("cuda")
scale:
__eval__: (0.5 * torch.ones(1)).to("cuda")
use_lu: false

0 comments on commit d29d9f0

Please sign in to comment.