-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add config entry to test multiple location params.
- Loading branch information
1 parent
29f901d
commit d29d9f0
Showing
1 changed file
with
285 additions
and
0 deletions.
There are no files selected for viewing
285 changes: 285 additions & 0 deletions
285
experiments/mnist/mnist_digit_2_multiple_locs_scaled_14_linf_lognormal_gpu.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,285 @@ | ||
--- | ||
__object__: src.explib.base.ExperimentCollection | ||
name: mnist_multiple_digits_poc | ||
experiments: | ||
- &mnist_logNormal_linf_digit_0 | ||
__object__: src.explib.hyperopt.HyperoptExperiment | ||
name: mnist_logNormal_linf_digit_2_loc_1 | ||
scheduler: &scheduler | ||
__object__: ray.tune.schedulers.ASHAScheduler | ||
max_t: 1000000 | ||
grace_period: 1000000 | ||
reduction_factor: 2 | ||
num_hyperopt_samples: &num_hyperopt_samples 3 | ||
gpus_per_trial: &gpus_per_trial 2 | ||
cpus_per_trial: &cpus_per_trial 0 | ||
tuner_params: &tuner_params | ||
metric: val_loss | ||
mode: min | ||
device: &device cuda | ||
trial_config: | ||
logging: | ||
images: true | ||
"image_shape": [14, 14] | ||
dataset: &dataset | ||
__object__: src.explib.datasets.MnistSplit | ||
scale: true | ||
digit: 2 | ||
device: *device | ||
scale_factor: 2 | ||
epochs: &epochs 200000 | ||
patience: &patience 150 | ||
batch_size: &batch_size | ||
__eval__: tune.choice([16, 32]) | ||
optim_cfg: &optim | ||
optimizer: | ||
__class__: torch.optim.Adam | ||
params: | ||
lr: | ||
__eval__: tune.loguniform(1e-4, 1e-3) | ||
weight_decay: 0.0 | ||
model_cfg: | ||
type: | ||
__class__: &model src.veriflow.flows.NiceFlow | ||
params: | ||
soft_training: true | ||
training_noise_prior: | ||
__object__: pyro.distributions.Uniform | ||
low: | ||
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20 | ||
high: | ||
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01 | ||
prior_scale: 5.0 | ||
coupling_layers: &coupling_layers | ||
__eval__: tune.choice([i for i in range(3, 4)]) | ||
coupling_nn_layers: &coupling_nn_layers | ||
__eval__: "tune.choice([[w] * l for l in [1] for w in [294]])" | ||
nonlinearity: &nonlinearity | ||
__eval__: tune.choice([torch.nn.ReLU()]) | ||
split_dim: 98 | ||
base_distribution: | ||
__object__: src.veriflow.distributions.RadialDistribution | ||
device: *device | ||
p: | ||
__eval__: math.inf | ||
loc: | ||
__eval__: torch.zeros(196).to("cuda") | ||
norm_distribution: | ||
__object__: pyro.distributions.LogNormal | ||
loc: | ||
__eval__: torch.ones(1).to("cuda") | ||
scale: | ||
__eval__: (0.5 * torch.ones(1)).to("cuda") | ||
use_lu: false | ||
- &mnist_logNormal_linf_digit_2_loc_1_2 | ||
name: mnist_logNormal_linf_digit_2_loc_1_2 | ||
__object__: src.explib.hyperopt.HyperoptExperiment | ||
scheduler: *scheduler | ||
num_hyperopt_samples: *num_hyperopt_samples | ||
gpus_per_trial: *gpus_per_trial | ||
cpus_per_trial: *cpus_per_trial | ||
tuner_params: *tuner_params | ||
device: *device | ||
trial_config: | ||
logging: | ||
images: true | ||
"image_shape": [ 14, 14 ] | ||
dataset: | ||
__object__: src.explib.datasets.MnistSplit | ||
scale: true | ||
digit: 2 | ||
device: *device | ||
scale_factor: 2 | ||
epochs: *epochs | ||
patience: *patience | ||
batch_size: *batch_size | ||
optim_cfg: *optim | ||
model_cfg: | ||
type: | ||
__class__: *model | ||
params: | ||
soft_training: true | ||
training_noise_prior: | ||
__object__: pyro.distributions.Uniform | ||
low: | ||
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20 | ||
high: | ||
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01 | ||
prior_scale: 5.0 | ||
coupling_layers: *coupling_layers | ||
coupling_nn_layers: *coupling_nn_layers | ||
nonlinearity: *nonlinearity | ||
split_dim: 98 | ||
base_distribution: | ||
__object__: src.veriflow.distributions.RadialDistribution | ||
device: *device | ||
p: | ||
__eval__: math.inf | ||
loc: | ||
__eval__: torch.zeros(196).to("cuda") | ||
norm_distribution: | ||
__object__: pyro.distributions.LogNormal | ||
loc: | ||
__eval__: (1.2* torch.ones(1)).to("cuda") | ||
scale: | ||
__eval__: (0.5 * torch.ones(1)).to("cuda") | ||
use_lu: false | ||
- &mnist_logNormal_linf_digit_2_loc_1_4 | ||
name: mnist_logNormal_linf_digit_2_loc_1_4 | ||
__object__: src.explib.hyperopt.HyperoptExperiment | ||
scheduler: *scheduler | ||
num_hyperopt_samples: *num_hyperopt_samples | ||
gpus_per_trial: *gpus_per_trial | ||
cpus_per_trial: *cpus_per_trial | ||
tuner_params: *tuner_params | ||
device: *device | ||
trial_config: | ||
logging: | ||
images: true | ||
"image_shape": [ 14, 14 ] | ||
dataset: | ||
__object__: src.explib.datasets.MnistSplit | ||
scale: true | ||
digit: 2 | ||
device: *device | ||
scale_factor: 2 | ||
epochs: *epochs | ||
patience: *patience | ||
batch_size: *batch_size | ||
optim_cfg: *optim | ||
model_cfg: | ||
type: | ||
__class__: *model | ||
params: | ||
soft_training: true | ||
training_noise_prior: | ||
__object__: pyro.distributions.Uniform | ||
low: | ||
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20 | ||
high: | ||
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01 | ||
prior_scale: 5.0 | ||
coupling_layers: *coupling_layers | ||
coupling_nn_layers: *coupling_nn_layers | ||
nonlinearity: *nonlinearity | ||
split_dim: 98 | ||
base_distribution: | ||
__object__: src.veriflow.distributions.RadialDistribution | ||
device: *device | ||
p: | ||
__eval__: math.inf | ||
loc: | ||
__eval__: torch.zeros(196).to("cuda") | ||
norm_distribution: | ||
__object__: pyro.distributions.LogNormal | ||
loc: | ||
__eval__: (1.4 * torch.ones(1)).to("cuda") | ||
scale: | ||
__eval__: (0.5 * torch.ones(1)).to("cuda") | ||
use_lu: false | ||
- &mnist_logNormal_linf_digit_2_loc_1_6 | ||
name: mnist_logNormal_linf_digit_2_loc_1_6 | ||
__object__: src.explib.hyperopt.HyperoptExperiment | ||
scheduler: *scheduler | ||
num_hyperopt_samples: *num_hyperopt_samples | ||
gpus_per_trial: *gpus_per_trial | ||
cpus_per_trial: *cpus_per_trial | ||
tuner_params: *tuner_params | ||
device: *device | ||
trial_config: | ||
logging: | ||
images: true | ||
"image_shape": [ 14, 14 ] | ||
dataset: | ||
__object__: src.explib.datasets.MnistSplit | ||
scale: true | ||
digit: 2 | ||
device: *device | ||
scale_factor: 2 | ||
epochs: *epochs | ||
patience: *patience | ||
batch_size: *batch_size | ||
optim_cfg: *optim | ||
model_cfg: | ||
type: | ||
__class__: *model | ||
params: | ||
soft_training: true | ||
training_noise_prior: | ||
__object__: pyro.distributions.Uniform | ||
low: | ||
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20 | ||
high: | ||
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01 | ||
prior_scale: 5.0 | ||
coupling_layers: *coupling_layers | ||
coupling_nn_layers: *coupling_nn_layers | ||
nonlinearity: *nonlinearity | ||
split_dim: 98 | ||
base_distribution: | ||
__object__: src.veriflow.distributions.RadialDistribution | ||
device: *device | ||
p: | ||
__eval__: math.inf | ||
loc: | ||
__eval__: torch.zeros(196).to("cuda") | ||
norm_distribution: | ||
__object__: pyro.distributions.LogNormal | ||
loc: | ||
__eval__: (1.6 * torch.ones(1)).to("cuda") | ||
scale: | ||
__eval__: (0.5 * torch.ones(1)).to("cuda") | ||
use_lu: false | ||
- &mnist_logNormal_linf_digit_2_loc_1_8 | ||
name: mnist_logNormal_linf_digit_2_loc_1_8 | ||
__object__: src.explib.hyperopt.HyperoptExperiment | ||
scheduler: *scheduler | ||
num_hyperopt_samples: *num_hyperopt_samples | ||
gpus_per_trial: *gpus_per_trial | ||
cpus_per_trial: *cpus_per_trial | ||
tuner_params: *tuner_params | ||
device: *device | ||
trial_config: | ||
logging: | ||
images: true | ||
"image_shape": [ 14, 14 ] | ||
dataset: | ||
__object__: src.explib.datasets.MnistSplit | ||
scale: true | ||
digit: 2 | ||
device: *device | ||
scale_factor: 2 | ||
epochs: *epochs | ||
patience: *patience | ||
batch_size: *batch_size | ||
optim_cfg: *optim | ||
model_cfg: | ||
type: | ||
__class__: *model | ||
params: | ||
soft_training: true | ||
training_noise_prior: | ||
__object__: pyro.distributions.Uniform | ||
low: | ||
__eval__: 1e-30 * torch.ones(1).to("cuda") #1e-20 | ||
high: | ||
__eval__: 0.001 * torch.ones(1).to("cuda") #0.01 | ||
prior_scale: 5.0 | ||
coupling_layers: *coupling_layers | ||
coupling_nn_layers: *coupling_nn_layers | ||
nonlinearity: *nonlinearity | ||
split_dim: 98 | ||
base_distribution: | ||
__object__: src.veriflow.distributions.RadialDistribution | ||
device: *device | ||
p: | ||
__eval__: math.inf | ||
loc: | ||
__eval__: torch.zeros(196).to("cuda") | ||
norm_distribution: | ||
__object__: pyro.distributions.LogNormal | ||
loc: | ||
__eval__: (1.8 * torch.ones(1)).to("cuda") | ||
scale: | ||
__eval__: (0.5 * torch.ones(1)).to("cuda") | ||
use_lu: false |