Qiskit implementation of a Portfolio Optimization.
- Python 3.8+
- Qiskit
- CVXPY
- MOSEK
- tqdm
pip install -r requirements.txt
The VQE Solver takes a Covariance matrix and changes it to an Ising problem. The Ising model's hamiltonian is then minimized with the VQE.
from src.solver.vqe.vqe_solver import VQESolver
from qiskit import BasicAer
from qiskit.utils import QuantumInstance
from qiskit.circuit.library import TwoLocal
from qiskit.algorithms.optimizers import SLSQP
vqe = VQESolver()
vqe.qp(Cov = Cov)
vqe.to_ising(Nq = Nq)
# Prepare QuantumInstance
qi = QuantumInstance(BasicAer.get_backend('statevector_simulator'), seed_transpiler=seed, seed_simulator=seed)
# Select the VQE parameters
N = Cov.shape[0]
ansatz = TwoLocal(num_qubits=N*Nq,
rotation_blocks=['ry','rz'],
entanglement_blocks='cz',
reps=args.reps,
entanglement='full')
slsqp = SLSQP(maxiter=args.maxiter)
vqe.vqe_instance(ansatz=ansatz, optimizer=slsqp, quantum_instance=qi)
res_vqe = vqe.solve()
print(res_vqe)