Skip to content

Rack is vulnerable to a memory-exhaustion DoS through unbounded URL-encoded body parsing

High severity GitHub Reviewed Published Oct 10, 2025 in rack/rack • Updated Oct 13, 2025

Package

bundler rack (RubyGems)

Affected versions

< 2.2.20
>= 3.0, < 3.1.18
>= 3.2, < 3.2.3

Patched versions

2.2.20
3.1.18
3.2.3

Description

Summary

Rack::Request#POST reads the entire request body into memory for Content-Type: application/x-www-form-urlencoded, calling rack.input.read(nil) without enforcing a length or cap. Large request bodies can therefore be buffered completely into process memory before parsing, leading to denial of service (DoS) through memory exhaustion.

Details

When handling non-multipart form submissions, Rack’s request parser performs:

form_vars = get_header(RACK_INPUT).read

Since read is called with no argument, the entire request body is loaded into a Ruby String. This occurs before query parameter parsing or enforcement of any params_limit. As a result, Rack applications without an upstream body-size limit can experience unbounded memory allocation proportional to request size.

Impact

Attackers can send large application/x-www-form-urlencoded bodies to consume process memory, causing slowdowns or termination by the operating system (OOM). The effect scales linearly with request size and concurrency. Even with parsing limits configured, the issue occurs before those limits are enforced.

Mitigation

  • Update to a patched version of Rack that enforces form parameter limits using query_parser.bytesize_limit, preventing unbounded reads of application/x-www-form-urlencoded bodies.
  • Enforce strict maximum body size at the proxy or web server layer (e.g., Nginx client_max_body_size, Apache LimitRequestBody).

References

@ioquatix ioquatix published to rack/rack Oct 10, 2025
Published to the GitHub Advisory Database Oct 10, 2025
Reviewed Oct 10, 2025
Published by the National Vulnerability Database Oct 10, 2025
Last updated Oct 13, 2025

Severity

High

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Network
Attack complexity
Low
Privileges required
None
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(17th percentile)

Weaknesses

Uncontrolled Resource Consumption

The product does not properly control the allocation and maintenance of a limited resource, thereby enabling an actor to influence the amount of resources consumed, eventually leading to the exhaustion of available resources. Learn more on MITRE.

CVE ID

CVE-2025-61919

GHSA ID

GHSA-6xw4-3v39-52mm

Source code

Credits

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.