Skip to content

Duplicate Advisory: @cloudflare/workers-oauth-provider missing validation of redirect_uri on authorize endpoint

Moderate severity GitHub Reviewed Published May 1, 2025 to the GitHub Advisory Database • Updated May 1, 2025
Withdrawn This advisory was withdrawn on May 1, 2025

Package

npm @cloudflare/workers-oauth-provider (npm)

Affected versions

< 0.0.5

Patched versions

0.0.5

Description

Duplicate Advisory

This advisory has been withdrawn because it is a duplicate of GHSA-4pc9-x2fx-p7vj. This link is maintained to preserve external references.

Original Description

The OAuth implementation in workers-oauth-provider that is part of MCP framework https://github.com/cloudflare/workers-mcp , did not correctly validate that redirect_uri was on the allowed list of redirect URIs for the given client registration.

Fixed in:  cloudflare/workers-oauth-provider#26 cloudflare/workers-oauth-provider#26

Impact:

Under certain circumstances (see below), if a victim had previously authorized with a server built on workers-oath-provider, and an attacker could later trick the victim into visiting a malicious web site, then attacker could potentially steal the victim's credentials to the same OAuth server and subsequently impersonate them.

In order for the attack to be possible, the OAuth server's authorized callback must be designed to auto-approve authorizations that appear to come from an OAuth client that the victim has authorized previously. The authorization flow is not implemented by workers-oauth-provider; it is up to the application built on top to decide whether to implement such automatic re-authorization. However, many applications do implement such logic.

Note: It is a basic, well-known requirement that OAuth servers should verify that the redirect URI is among the allowed list for the client, both during the authorization flow and subsequently when exchanging the authorization code for an access token. workers-oauth-provider implemented only the latter check, not the former. Unfortunately, the former is the much more important check. Readers who are familiar with OAuth may recognize that failing to check redirect URIs against the allowed list is a well-known, basic mistake, covered extensively in the RFC and elsewhere. The author of this library would like everyone to know that he was, in fact, well-aware of this requirement, thought about it a lot while designing the library, and then, somehow, forgot to actually make sure the check was in the code. That is, it's not that he didn't know what he was doing, it's that he knew what he was doing but flubbed it.

References

Published by the National Vulnerability Database May 1, 2025
Published to the GitHub Advisory Database May 1, 2025
Reviewed May 1, 2025
Withdrawn May 1, 2025
Last updated May 1, 2025

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v4 base metrics

Exploitability Metrics
Attack Vector Network
Attack Complexity High
Attack Requirements Present
Privileges Required None
User interaction Passive
Vulnerable System Impact Metrics
Confidentiality High
Integrity None
Availability None
Subsequent System Impact Metrics
Confidentiality Low
Integrity None
Availability None

CVSS v4 base metrics

Exploitability Metrics
Attack Vector: This metric reflects the context by which vulnerability exploitation is possible. This metric value (and consequently the resulting severity) will be larger the more remote (logically, and physically) an attacker can be in order to exploit the vulnerable system. The assumption is that the number of potential attackers for a vulnerability that could be exploited from across a network is larger than the number of potential attackers that could exploit a vulnerability requiring physical access to a device, and therefore warrants a greater severity.
Attack Complexity: This metric captures measurable actions that must be taken by the attacker to actively evade or circumvent existing built-in security-enhancing conditions in order to obtain a working exploit. These are conditions whose primary purpose is to increase security and/or increase exploit engineering complexity. A vulnerability exploitable without a target-specific variable has a lower complexity than a vulnerability that would require non-trivial customization. This metric is meant to capture security mechanisms utilized by the vulnerable system.
Attack Requirements: This metric captures the prerequisite deployment and execution conditions or variables of the vulnerable system that enable the attack. These differ from security-enhancing techniques/technologies (ref Attack Complexity) as the primary purpose of these conditions is not to explicitly mitigate attacks, but rather, emerge naturally as a consequence of the deployment and execution of the vulnerable system.
Privileges Required: This metric describes the level of privileges an attacker must possess prior to successfully exploiting the vulnerability. The method by which the attacker obtains privileged credentials prior to the attack (e.g., free trial accounts), is outside the scope of this metric. Generally, self-service provisioned accounts do not constitute a privilege requirement if the attacker can grant themselves privileges as part of the attack.
User interaction: This metric captures the requirement for a human user, other than the attacker, to participate in the successful compromise of the vulnerable system. This metric determines whether the vulnerability can be exploited solely at the will of the attacker, or whether a separate user (or user-initiated process) must participate in some manner.
Vulnerable System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the VULNERABLE SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the VULNERABLE SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the VULNERABLE SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
Subsequent System Impact Metrics
Confidentiality: This metric measures the impact to the confidentiality of the information managed by the SUBSEQUENT SYSTEM due to a successfully exploited vulnerability. Confidentiality refers to limiting information access and disclosure to only authorized users, as well as preventing access by, or disclosure to, unauthorized ones.
Integrity: This metric measures the impact to integrity of a successfully exploited vulnerability. Integrity refers to the trustworthiness and veracity of information. Integrity of the SUBSEQUENT SYSTEM is impacted when an attacker makes unauthorized modification of system data. Integrity is also impacted when a system user can repudiate critical actions taken in the context of the system (e.g. due to insufficient logging).
Availability: This metric measures the impact to the availability of the SUBSEQUENT SYSTEM resulting from a successfully exploited vulnerability. While the Confidentiality and Integrity impact metrics apply to the loss of confidentiality or integrity of data (e.g., information, files) used by the system, this metric refers to the loss of availability of the impacted system itself, such as a networked service (e.g., web, database, email). Since availability refers to the accessibility of information resources, attacks that consume network bandwidth, processor cycles, or disk space all impact the availability of a system.
CVSS:4.0/AV:N/AC:H/AT:P/PR:N/UI:P/VC:H/VI:N/VA:N/SC:L/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:Amber

EPSS score

Weaknesses

CVE ID

No known CVE

GHSA ID

GHSA-7cp4-jw97-3rc2

Source code

No known source code
Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.