Skip to content

In the Linux kernel, the following vulnerability has been...

Moderate severity Unreviewed Published May 1, 2025 to the GitHub Advisory Database • Updated Nov 7, 2025

Package

No package listedSuggest a package

Affected versions

Unknown

Patched versions

Unknown

Description

In the Linux kernel, the following vulnerability has been resolved:

bridge: switchdev: Fix memory leaks when changing VLAN protocol

The bridge driver can offload VLANs to the underlying hardware either
via switchdev or the 8021q driver. When the former is used, the VLAN is
marked in the bridge driver with the 'BR_VLFLAG_ADDED_BY_SWITCHDEV'
private flag.

To avoid the memory leaks mentioned in the cited commit, the bridge
driver will try to delete a VLAN via the 8021q driver if the VLAN is not
marked with the previously mentioned flag.

When the VLAN protocol of the bridge changes, switchdev drivers are
notified via the 'SWITCHDEV_ATTR_ID_BRIDGE_VLAN_PROTOCOL' attribute, but
the 8021q driver is also called to add the existing VLANs with the new
protocol and delete them with the old protocol.

In case the VLANs were offloaded via switchdev, the above behavior is
both redundant and buggy. Redundant because the VLANs are already
programmed in hardware and drivers that support VLAN protocol change
(currently only mlx5) change the protocol upon the switchdev attribute
notification. Buggy because the 8021q driver is called despite these
VLANs being marked with 'BR_VLFLAG_ADDED_BY_SWITCHDEV'. This leads to
memory leaks [1] when the VLANs are deleted.

Fix by not calling the 8021q driver for VLANs that were already
programmed via switchdev.

[1]
unreferenced object 0xffff8881f6771200 (size 256):
comm "ip", pid 446855, jiffies 4298238841 (age 55.240s)
hex dump (first 32 bytes):
00 00 7f 0e 83 88 ff ff 00 00 00 00 00 00 00 00 ................
00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................
backtrace:
[<00000000012819ac>] vlan_vid_add+0x437/0x750
[<00000000f2281fad>] __br_vlan_set_proto+0x289/0x920
[<000000000632b56f>] br_changelink+0x3d6/0x13f0
[<0000000089d25f04>] __rtnl_newlink+0x8ae/0x14c0
[<00000000f6276baf>] rtnl_newlink+0x5f/0x90
[<00000000746dc902>] rtnetlink_rcv_msg+0x336/0xa00
[<000000001c2241c0>] netlink_rcv_skb+0x11d/0x340
[<0000000010588814>] netlink_unicast+0x438/0x710
[<00000000e1a4cd5c>] netlink_sendmsg+0x788/0xc40
[<00000000e8992d4e>] sock_sendmsg+0xb0/0xe0
[<00000000621b8f91>] ____sys_sendmsg+0x4ff/0x6d0
[<000000000ea26996>] ___sys_sendmsg+0x12e/0x1b0
[<00000000684f7e25>] __sys_sendmsg+0xab/0x130
[<000000004538b104>] do_syscall_64+0x3d/0x90
[<0000000091ed9678>] entry_SYSCALL_64_after_hwframe+0x46/0xb0

References

Published by the National Vulnerability Database May 1, 2025
Published to the GitHub Advisory Database May 1, 2025
Last updated Nov 7, 2025

Severity

Moderate

CVSS overall score

This score calculates overall vulnerability severity from 0 to 10 and is based on the Common Vulnerability Scoring System (CVSS).
/ 10

CVSS v3 base metrics

Attack vector
Local
Attack complexity
Low
Privileges required
Low
User interaction
None
Scope
Unchanged
Confidentiality
None
Integrity
None
Availability
High

CVSS v3 base metrics

Attack vector: More severe the more the remote (logically and physically) an attacker can be in order to exploit the vulnerability.
Attack complexity: More severe for the least complex attacks.
Privileges required: More severe if no privileges are required.
User interaction: More severe when no user interaction is required.
Scope: More severe when a scope change occurs, e.g. one vulnerable component impacts resources in components beyond its security scope.
Confidentiality: More severe when loss of data confidentiality is highest, measuring the level of data access available to an unauthorized user.
Integrity: More severe when loss of data integrity is the highest, measuring the consequence of data modification possible by an unauthorized user.
Availability: More severe when the loss of impacted component availability is highest.
CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H

EPSS score

Exploit Prediction Scoring System (EPSS)

This score estimates the probability of this vulnerability being exploited within the next 30 days. Data provided by FIRST.
(23rd percentile)

Weaknesses

Missing Release of Memory after Effective Lifetime

The product does not sufficiently track and release allocated memory after it has been used, which slowly consumes remaining memory. Learn more on MITRE.

CVE ID

CVE-2022-49812

GHSA ID

GHSA-9x8c-4rx4-5mxv

Source code

No known source code

Dependabot alerts are not supported on this advisory because it does not have a package from a supported ecosystem with an affected and fixed version.

Learn more about GitHub language support

Loading Checking history
See something to contribute? Suggest improvements for this vulnerability.