Stack overflow due to looping TFLite subgraph
High severity
GitHub Reviewed
Published
May 13, 2021
in
tensorflow/tensorflow
•
Updated Oct 31, 2024
Package
Affected versions
< 2.1.4
>= 2.2.0, < 2.2.3
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
Patched versions
2.1.4
2.2.3
2.3.3
2.4.2
< 2.1.4
>= 2.2.0, < 2.2.3
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
2.1.4
2.2.3
2.3.3
2.4.2
< 2.1.4
>= 2.2.0, < 2.2.3
>= 2.3.0, < 2.3.3
>= 2.4.0, < 2.4.2
2.1.4
2.2.3
2.3.3
2.4.2
Description
Published by the National Vulnerability Database
May 14, 2021
Reviewed
May 18, 2021
Published to the GitHub Advisory Database
May 21, 2021
Last updated
Oct 31, 2024
Impact
TFlite graphs must not have loops between nodes. However, this condition was not checked and an attacker could craft models that would result in infinite loop during evaluation. In certain cases, the infinite loop would be replaced by stack overflow due to too many recursive calls.
For example, the
While
implementation could be tricked into a scneario where both the body and the loop subgraphs are the same. Evaluating one of the subgraphs means calling theEval
function for the other and this quickly exhaust all stack space.Patches
We have patched the issue in GitHub commit 9c1dc920d8ffb4893d6c9d27d1f039607b326743 (for the
While
operator) and in GitHub commit c6173f5fe66cdbab74f4f869311fe6aae2ba35f4 (in general).The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
References