Skip to content

Commit

Permalink
New citation (#276)
Browse files Browse the repository at this point in the history
  • Loading branch information
nicl-nno authored Aug 5, 2024
1 parent c05f65b commit ab6e1f3
Show file tree
Hide file tree
Showing 2 changed files with 17 additions and 44 deletions.
29 changes: 8 additions & 21 deletions README.rst
Original file line number Diff line number Diff line change
Expand Up @@ -167,29 +167,16 @@ GOLEM можно установить с помощью ``pip``:
Цитирование
===========

Если вы используете наш проект в своей работе или исследовании, мы будем признательны за цитирование.
Если вы используете наш проект в своей работе или исследовании, мы будем признательны за цитирование:

@article{nikitin2021automated,
title = {Automated evolutionary approach for the design of composite machine learning pipelines},
author = {Nikolay O. Nikitin and Pavel Vychuzhanin and Mikhail Sarafanov and Iana S. Polonskaia and Ilia Revin and Irina V. Barabanova and Gleb Maximov and Anna V. Kalyuzhnaya and Alexander Boukhanovsky},
journal = {Future Generation Computer Systems},
year = {2021},
issn = {0167-739X},
doi = {https://doi.org/10.1016/j.future.2021.08.022}}
@inproceedings{pinchuk2024golem,
title={GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects},
author={Pinchuk, Maiia and Kirgizov, Grigorii and Yamshchikova, Lyubov and Nikitin, Nikolay and Deeva, Irina and Shakhkyan, Karine and Borisov, Ivan and Zharkov, Kirill and Kalyuzhnaya, Anna},
booktitle={Proceedings of the Genetic and Evolutionary Computation Conference Companion},
pages={1668--1675},
year={2024}
}

Публикации, описывающие применение GOLEM для прикладных задач:
==============================================================

В данных публикациях описывается применение алгоритмов GOLEM и основанных на нем решений
для различных прикладных задач.

- Алгоритмы поиска оптимального пайплайна машинного обучения для прогнозирования временных рядов: Sarafanov M., Pokrovskii V., Nikitin N. O. Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series //2022 IEEE Congress on Evolutionary Computation (CEC). – IEEE, 2022. – С. 01-08.

- Алгоритмы идентификации структуры уравнения для акустических данных: Hvatov A. Data-Driven Approach for the Floquet Propagator Inverse Problem Solution //ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – IEEE, 2022. – С. 3813-3817.

- Алгоритмы идентификации структуры дифференциальных уравнений в частных производных: Maslyaev M., Hvatov A. Solver-Based Fitness Function for the Data-Driven Evolutionary Discovery of Partial Differential Equations //2022 IEEE Congress on Evolutionary Computation (CEC). – IEEE, 2022. – С. 1-8.

- Алгоритмы структурного обучения сетей: Deeva I., Kalyuzhnaya A. V., Alexander V. Boukhanovsky Adaptive Learning Algorithm for Bayesian Networks Based on Kernel Mixtures Distributions//International Journal of Artificial Intelligence. – 2023. - Т.21. - №. 1. - С. 90.

.. |docs| image:: https://readthedocs.org/projects/thegolem/badge/?version=latest
:target: https://thegolem.readthedocs.io/en/latest/?badge=latest
Expand Down
32 changes: 9 additions & 23 deletions README_en.rst
Original file line number Diff line number Diff line change
Expand Up @@ -167,29 +167,15 @@ Contacts
Citation
========

If you use our project in your work or research, we would appreciate citations.

@article{nikitin2021automated,
title = {Automated evolutionary approach for the design of composite machine learning pipelines},
author = {Nikolay O. Nikitin and Pavel Vychuzhanin and Mikhail Sarafanov and Iana S. Polonskaia and Ilia Revin and Irina V. Barabanova and Gleb Maximov and Anna V. Kalyuzhnaya and Alexander Boukhanovsky},
journal = {Future Generation Computer Systems},
year = {2021},
issn = {0167-739X},
doi = {https://doi.org/10.1016/j.future.2021.08.022}}

Papers that describe applications of GOLEM:
===========================================

There are various cases solved with GOLEM's algorithms:

- Algorithms for time series forecasting pipeline design: Sarafanov M., Pokrovskii V., Nikitin N. O. Evolutionary Automated Machine Learning for Multi-Scale Decomposition and Forecasting of Sensor Time Series //2022 IEEE Congress on Evolutionary Computation (CEC). – IEEE, 2022. – С. 01-08.

- Algorithms for acoustic equation discovery: Hvatov A. Data-Driven Approach for the Floquet Propagator Inverse Problem Solution //ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). – IEEE, 2022. – С. 3813-3817.

- Algorithms for PDE discovery: Maslyaev M., Hvatov A. Solver-Based Fitness Function for the Data-Driven Evolutionary Discovery of Partial Differential Equations //2022 IEEE Congress on Evolutionary Computation (CEC). – IEEE, 2022. – С. 1-8.

- Algorithms for structural learning of Bayesian Networks: Deeva I., Kalyuzhnaya A. V., Alexander V. Boukhanovsky Adaptive Learning Algorithm for Bayesian Networks Based on Kernel Mixtures Distributions//International Journal of Artificial Intelligence. – 2023. - Т.21. - №. 1. - С. 90.

If you use our project in your work or research, we would appreciate citations:

@inproceedings{pinchuk2024golem,
title={GOLEM: Flexible Evolutionary Design of Graph Representations of Physical and Digital Objects},
author={Pinchuk, Maiia and Kirgizov, Grigorii and Yamshchikova, Lyubov and Nikitin, Nikolay and Deeva, Irina and Shakhkyan, Karine and Borisov, Ivan and Zharkov, Kirill and Kalyuzhnaya, Anna},
booktitle={Proceedings of the Genetic and Evolutionary Computation Conference Companion},
pages={1668--1675},
year={2024}
}

.. |docs| image:: https://readthedocs.org/projects/thegolem/badge/?version=latest
:target: https://thegolem.readthedocs.io/en/latest/?badge=latest
Expand Down

0 comments on commit ab6e1f3

Please sign in to comment.