Skip to content

alphacoder-mp3/SENTINET-AI

Folders and files

NameName
Last commit message
Last commit date
Dec 5, 2024
Dec 5, 2024
Dec 5, 2024
Nov 25, 2024
Nov 26, 2024
Nov 25, 2024
Dec 5, 2024
Nov 26, 2024
Nov 26, 2024
Nov 23, 2024
Nov 26, 2024
Nov 26, 2024
Nov 25, 2024
Dec 5, 2024
Dec 5, 2024
Dec 5, 2024
Dec 5, 2024
Nov 25, 2024
Dec 5, 2024

Repository files navigation

Next-Generation AI Model Playground

A sophisticated real-time AI model interaction platform with streaming capabilities, built with Next.js 15 and React 19.

Features

  • ✨ Real-time AI model interaction with streaming responses
  • πŸ“Š Live metrics tracking (tokens/sec, total tokens)
  • πŸ”„ Automatic retry logic with exponential backoff
  • πŸ”§ Configurable model parameters
  • πŸ“± Progressive Web App (PWA) support
  • πŸ”Œ Offline functionality
  • ⚑ Performance optimized with React memoization
  • πŸ“ LaTeX equation support
  • 🎨 Dark/Light mode support

Quick Start

# Install dependencies (use legacy peer deps due to React 19 RC)
npm install --legacy-peer-deps

# Start development server
npm run dev

# Build for production
npm run build

# Start production server
npm start

Architecture Overview

Core Components

  1. Playground (components/playground/playground.tsx)

    • Main interface component
    • Handles user input and AI interactions
    • Manages conversation state
  2. Message System

    • MessageWindow: Virtualized message display
    • MessageItem: Individual message rendering
    • LaTeX equation support via KaTeX
    • Code syntax highlighting
  3. Model Controls

    • Temperature adjustment
    • Top-P configuration
    • Frequency/Presence penalty settings
  4. Error Handling

    • Error boundaries for component isolation
    • Automatic retry logic
    • Sentry integration for monitoring

State Management

  • React hooks for local state
  • IndexedDB for conversation persistence
  • Local storage for user preferences

Performance Considerations

  1. Optimizations

    • Component memoization
    • Virtualized list rendering
    • Service worker for offline support
    • Asset caching strategies
  2. Memory Management

    • Message virtualization
    • Efficient state updates
    • Cleanup on unmount

Error Handling

  1. Retry Logic

    • Exponential backoff
    • Configurable attempts
    • Error context preservation
  2. Monitoring

    • Sentry integration
    • Error logging
    • User feedback

Future Improvements

  1. Features

    • Multiple model support
    • Conversation branching
    • Export/Import conversations
    • Collaborative features
  2. Technical

    • WebSocket implementation
    • Stream compression
    • Worker thread processing
    • Enhanced caching strategies

Known Limitations

  1. Browser Support

    • Service workers require HTTPS
    • IndexedDB storage limits
    • PWA installation requirements
  2. Performance

    • Initial load time with full bundle
    • Memory usage with long conversations
    • Mobile device considerations

Edge Cases

  1. Network

    • Intermittent connectivity
    • Failed retry attempts
    • Partial message delivery
  2. User Input

    • Large message handling
    • Special character processing
    • Rate limiting
  3. Storage

    • Quota exceeded handling
    • Data corruption recovery
    • Cross-device sync limitations

Development

Prerequisites

  • Node.js 18+
  • npm or yarn
  • Modern browser with service worker support

Environment Setup

  1. Clone the repository
  2. Install dependencies with npm install --legacy-peer-deps
  3. Create .env.local with required variables
  4. Start development server

Testing

npm run test        # Run unit tests
npm run test:e2e    # Run end-to-end tests
npm run lint        # Run linting

License

MIT License - see LICENSE file for details

About

Built an AI tool just like ChatGPT, Claude or Deepseek R1

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages