Interactive dashboard for analysis and evaluation of prediction models for CALCLOUD (Hubble Space Telescope's data reprocessing in the cloud package).
DOCKER
docker pull alphasentaurii/calcloud-ml-dashboard:latest
docker run -d -p 8050:8050 alphasentaurii/calcloud-ml-dashboard:latest
View the running dashboard in your browser: http://0.0.0.0:8050/
Using setup.py
git clone https://grit.stsci.edu/rkein/calcloud-ml-dashboard
cd calcloud-ml-dashboard
python setup.py install --user
Using virtual env
git clone https://grit.stsci.edu/rkein/calcloud-ml-dashboard
python virtualenv dash-venv
source dash-venv/bin/activate
cd calcloud-ml-dashboard
pip install -r requirements.txt
Once installed you can run the flask app locally
git clone https://grit.stsci.edu/rkein/calcloud-ml-dashboard
cd calcloud-ml-dashboard/calcloudML
python app.py
View the running dashboard in your browser: http://127.0.0.1:8050/
Compare and evaluate model versions with roc-auc, precision-recall, keras history, and confusion matrix plots.
Accuracy vs Loss Barplots and Keras History (train vs test)
Receiver Operator Characteristic (Area Under the Curve)
Analyze data distributions, linearity and other characteristics.
Feature Scatterplots by Instrument
Feature Boxplots by Instrument
See LICENSE.rst
for more information.