Inspired by darknet
and leaf
- not requires
std
(onlyalloc
for tensor allocations, bump allocator is ok, so it can be compiled to stm32f4 board) - available layers:
Linear
,ReLu
,Sigmoid
,Softmax
(no backward),Conv2d
,ZeroPadding2d
,MaxPool2d
,AvgPool2d
(no backward),Flatten
- available optimizers:
Sgd
,Adam
,RMSProp
- available losses:
CrossEntropy
(no forward),MeanSquareError
- available backends:
Native
,NativeBlas
(no convolution yet)
- example of running
yarnn
in browser usingWASM
- example of running
yarnn
onstm32f4
board - finish
AvgPool2d
backpropogation - add
Dropout
layer - add
BatchNorm
layer - convolution with BLAS support
CUDA
supportOpenCL
support
DepthwiseConv2d
layerConv3d
layerDeconv2d
layerk210
backend
use yarnn::model;
use yarnn::layer::*;
use yarnn::layers::*;
model! {
MnistConvModel (h: u32, w: u32, c: u32) {
input_shape: (c, h, w),
layers: {
Conv2d<N, B, O> {
filters: 8
},
ReLu<N, B>,
MaxPool2d<N, B> {
pool: (2, 2)
},
Conv2d<N, B, O> {
filters: 8
},
ReLu<N, B>,
MaxPool2d<N, B> {
pool: (2, 2)
},
Flatten<N, B>,
Linear<N, B, O> {
units: 10
},
Sigmoid<N, B>
}
}
}