Skip to content

Readme Terraform

Readme Terraform #65

Workflow file for this run

name: CD-Deploy
on:
push:
branches:
- main
- develop
pull_request:
branches:
- main
- develop
paths:
- './**'
- './terraform/**'
- './integration_tests/**'
jobs:
build-push-deploy:
runs-on: ubuntu-latest
steps:
- name: Check out repo
uses: actions/checkout@v3
- name: Configure AWS Credentials
uses: aws-actions/configure-aws-credentials@v1
with:
aws-access-key-id: ${{ secrets.AWS_ACCESS_KEY_ID }}
aws-secret-access-key: ${{ secrets.AWS_SECRET_ACCESS_KEY }}
aws-region: "eu-central-1"
- uses: hashicorp/setup-terraform@v2
with:
terraform_wrapper: false
# Define the infrastructure
- name: TF plan
id: tf-plan
working-directory: 'terraform'
run: |
terraform init -backend-config="key=mlops-zoomcamp-prod.tfstate" -reconfigure
terraform plan -var-file=vars/prod.tfvars
- name: TF Apply
id: tf-apply
working-directory: 'terraform'
if: ${{ steps.tf-plan.outcome }} == 'success'
run: |
terraform apply -auto-approve -var-file=vars/prod.tfvars
echo "::set-output name=ecr_repo::$(terraform output ecr_repo | xargs)"
echo "::set-output name=predictions_stream_name::$(terraform output predictions_stream_name | xargs)"
echo "::set-output name=model_bucket::$(terraform output model_bucket | xargs)"
echo "::set-output name=lambda_function::$(terraform output lambda_function | xargs)"
# Build-Push
- name: Login to Amazon ECR
id: login-ecr
uses: aws-actions/amazon-ecr-login@v1
- name: Build, tag, and push image to Amazon ECR
id: build-image-step
working-directory: "terraform"
env:
ECR_REGISTRY: ${{ steps.login-ecr.outputs.registry }}
ECR_REPOSITORY: ${{ steps.tf-apply.outputs.ecr_repo }}
IMAGE_TAG: "latest" # ${{ github.sha }}
run: |
# Ensure the build context includes the necessary files for the Docker build
ls -la
docker build -t ${ECR_REGISTRY}/${ECR_REPOSITORY}:${IMAGE_TAG} .
aws ecr get-login-password --region eu-central-1 | docker login --username AWS --password-stdin ${ECR_REGISTRY}
docker push $ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG
echo "::set-output name=image_uri::$ECR_REGISTRY/$ECR_REPOSITORY:$IMAGE_TAG"
# Deploy
- name: Get model artifacts
# The steps here are not suited for production.
# In practice, retrieving the latest model version or RUN_ID from a service like MLflow or DVC can also be integrated into a CI/CD pipeline.
# But due to the limited scope of this workshop, we would be keeping things simple.
# In practice, you would also have a separate training pipeline to write new model artifacts to your Model Bucket in Prod.
id: get-model-artifacts
working-directory: "terraform"
env:
MODEL_BUCKET_DEV: "mlflow-tracking-remote"
MODEL_BUCKET_PROD: ${{ steps.tf-apply.outputs.model_bucket }}
run: |
# export RUN_ID=$(aws s3api list-objects-v2 --bucket ${MODEL_BUCKET_DEV} \
# --query 'sort_by(Contents, &LastModified)[-1].Key' --output=text | cut -f2 -d/)
export RUN_ID=aa806b4bc4044777a0a25d5b8a24d7d5
aws s3 sync s3://${MODEL_BUCKET_DEV} s3://${MODEL_BUCKET_PROD}
echo "::set-output name=run_id::${RUN_ID}"
- name: Update Lambda
env:
LAMBDA_FUNCTION: ${{ steps.tf-apply.outputs.lambda_function }}
PREDICTIONS_STREAM_NAME: ${{ steps.tf-apply.outputs.predictions_stream_name }}
MODEL_BUCKET: ${{ steps.tf-apply.outputs.model_bucket }}
RUN_ID: ${{ steps.get-model-artifacts.outputs.run_id }}
run: |
variables="{ \
PREDICTIONS_STREAM_NAME=$PREDICTIONS_STREAM_NAME, MODEL_BUCKET=$MODEL_BUCKET, RUN_ID=$RUN_ID \
}"
STATE=$(aws lambda get-function --function-name $LAMBDA_FUNCTION --region "eu-central-1" --query 'Configuration.LastUpdateStatus' --output text)
while [[ "$STATE" == "InProgress" ]]
do
echo "sleep 5sec ...."
sleep 5s
STATE=$(aws lambda get-function --function-name $LAMBDA_FUNCTION --region "eu-west-1" --query 'Configuration.LastUpdateStatus' --output text)
echo $STATE
done
aws lambda update-function-configuration --function-name $LAMBDA_FUNCTION \
--environment "Variables=${variables}"