基于mxnet的ssh人脸检测算法(改进版)
2019.02.27
: 初始版本,优化误检
-
Reproduce SSH (Single Stage Headless Face Detector) with MXNet.
-
Original Caffe code: [https://github.com/deepinsight/insightface/tree/master/SSH]
-
Evaluation on WIDER FACE(原版的结果,改进后的没做测试,应该会更好):
Impelmentation | Easy-Set | Medium-Set | Hard-Set |
---|---|---|---|
Original Caffe SSH | 0.93123 | 0.92106 | 0.84582 |
Our SSH Model | 0.93489 | 0.92281 | 0.84525 |
- Evaluation on fddb = 98.7%
ubuntu16.04 cuda cudnn mxnet以及python的依赖项等
-
Type
make
to build necessary cxx libs(需要更改python版本时需在Makefile修改对应py的版本) -
Download MXNet VGG16 pretrained model from here and put it under
model
directory. -
编译,在rcnn/config.py里修改参数配置
config.BBOX_MASK_THRESH = 20 #add mask with in train for little size faces
# config.COLOR_JITTERING = 0.125
config.COLOR_JITTERING = 0 # add augmentation for bright and so on
config.TEST.SCORE_THRESH = 0.5
# scale changed as smallhard face
config.TEST.SCALES = [50, 500, 1000]
config.TEST.PYRAMID_SCALES = [0.75, 1.5]
default.base_lr = 0.004
default.e2e_epoch = 40
python train_ssh.py
算法对代码中blur>1, invalid>0, occlusion>1的人脸都加上mask,这样会减少误捡,但是同样造成漏检
.
├── WIDER_train
| └── images
│ ├── ....
│ ├── ....
└── ...