Skip to content

tensorflow implementation of LPRnet. A lightweight deep network for number plate recognition.

Notifications You must be signed in to change notification settings

bluesy7585/tensorflow_LPRnet

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tensorflow LPRnet

tensorflow implementation of LPRnet. A lightweight deep network for number plate recognition.

  • multiple scale CNN features
  • CTC for variable length chars
  • no RNN layers

training

generate plate images for training

python gen_plates.py

generate validation images

python gen_plates.py -s .\valid -n 200

train

python main.py -m train

or train with runtime-generated images

python main.py -m train -r

model checkpoint will be save for each SAVE_STEPS steps.
validation will be perform for each VALIDATE_EPOCHS epochs.

test

generate test images

python gen_plates.py -s .\test -n 200

restore checkpoint for test

python main.py -m test -c [checkpioint]

e.g

python main.py -m test -c .\checkpoint\LPRnet_steps8000_loss_0.069.ckpt
...
val loss: 0.31266
plate accuracy: 192-200 0.960, char accuracy: 1105-1115 0.99103

test single image

to test single image and show result

python main.py -m test -c [checkpoint] --img [image fullpath]

e.g

python main.py -m test -c .\checkpoint\LPRnet_steps5000_loss_0.215.ckpt --img .\test\AW73RHW_18771.jpg
...
restore from checkpoint: .\checkpoint\LPRnet_steps5000_loss_0.215.ckpt
AM73RHW

train custom data

change TRAIN_DIR, VAL_DIR in LPRnet.py to folder contains your training/validation data.
image filename with the format [label]_XXXX
e.g AB12CD_0000.jpg

  • char set

    change CHARS if possible chars in label is different with default.

  • char length

    default input resolution (94x24) has 24 timesteps in CTC layer.
    if your data have more than 8 chars in images, perhaps use wider resolution for good performance.
    e.g input width 128 has 32 timesteps in CTC layer.

references

About

tensorflow implementation of LPRnet. A lightweight deep network for number plate recognition.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages