Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix free #67

Merged
merged 7 commits into from
Jan 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
65 changes: 53 additions & 12 deletions bsi_zoo/estimators.py
Original file line number Diff line number Diff line change
Expand Up @@ -75,7 +75,7 @@ def _compute_reginv2(sing, n_nzero, lambda2):
reginv = np.zeros_like(sing)
sing = sing[:n_nzero]
with np.errstate(invalid="ignore"): # if lambda2==0
reginv[:n_nzero] = np.where(sing > 0, sing / (sing ** 2 + lambda2), 0)
reginv[:n_nzero] = np.where(sing > 0, sing / (sing**2 + lambda2), 0)
return reginv


Expand Down Expand Up @@ -119,7 +119,7 @@ def _compute_eloreta_kernel(L, *, lambda2, n_orient, whitener, loose=1.0, max_it
# Outer product
R_prior = source_std.reshape(n_src, 1, 3) * source_std.reshape(n_src, 3, 1)
else:
R_prior = source_std ** 2
R_prior = source_std**2

# The following was adapted under BSD license by permission of Guido Nolte
if force_equal or n_orient == 1:
Expand Down Expand Up @@ -207,7 +207,7 @@ def _solve_reweighted_lasso(
n_positions = L_w.shape[1] // n_orient
lc = np.empty(n_positions)
for j in range(n_positions):
L_j = L_w[:, (j * n_orient): ((j + 1) * n_orient)]
L_j = L_w[:, (j * n_orient) : ((j + 1) * n_orient)]
lc[j] = np.linalg.norm(np.dot(L_j.T, L_j), ord=2)
coef_, active_set, _ = _mixed_norm_solver_bcd(
y,
Expand Down Expand Up @@ -253,7 +253,7 @@ def _gamma_map_opt(

Parameters
----------
M : array, shape=(n_sensors, n_times)
: array, shape=(n_sensors, n_times)
Observation.
G : array, shape=(n_sensors, n_sources)
Forward operator.
Expand Down Expand Up @@ -341,7 +341,7 @@ def denom_fun(x):

if update_mode == 1:
# MacKay fixed point update (10) in [1]
numer = gammas ** 2 * np.mean((A * A.conj()).real, axis=1)
numer = gammas**2 * np.mean((A * A.conj()).real, axis=1)
denom = gammas * np.sum(G * CMinvG, axis=0)
elif update_mode == 2:
# modified MacKay fixed point update (11) in [1]
Expand All @@ -350,7 +350,7 @@ def denom_fun(x):
elif update_mode == 3:
# Expectation Maximization (EM) update
denom = None
numer = gammas ** 2 * np.mean((A * A.conj()).real, axis=1) + gammas * (
numer = gammas**2 * np.mean((A * A.conj()).real, axis=1) + gammas * (
1 - gammas * np.sum(G * CMinvG, axis=0)
)
else:
Expand Down Expand Up @@ -531,6 +531,17 @@ def gprime(w):
return x


def norm_l2inf(A, n_orient, copy=True):
from math import sqrt

"""L2-inf norm."""
if A.size == 0:
return 0.0
if copy:
A = A.copy()
return sqrt(np.max(groups_norm2(A, n_orient)))


def iterative_L1(L, y, alpha=0.2, n_orient=1, max_iter=1000, max_iter_reweighting=10):
"""Iterative Type-I estimator with L1 regularizer.

Expand Down Expand Up @@ -578,9 +589,18 @@ def gprime(w):
grp_norms = np.sqrt(groups_norm2(w.copy(), n_orient))
return np.repeat(grp_norms, n_orient).ravel() + eps

alpha_max = abs(L.T.dot(y)).max() / len(L)
if n_orient == 1:
alpha_max = abs(L.T.dot(y)).max() / len(L)
else:
n_dip_per_pos = 3
alpha_max = norm_l2inf(np.dot(L.T, y), n_dip_per_pos)

alpha = alpha * alpha_max

# eigen_fields, sing, eigen_leads = _safe_svd(L, full_matrices=False)

# y->M
# L->gain
x = _solve_reweighted_lasso(
L, y, alpha, n_orient, weights, max_iter, max_iter_reweighting, gprime
)
Expand All @@ -600,6 +620,7 @@ def iterative_L2(L, y, alpha=0.2, n_orient=1, max_iter=1000, max_iter_reweightin
for solving the following problem:
x^(k+1) <-- argmin_x ||y - Lx||^2_Fro + alpha * sum_i w_i^(k)|x_i|


Parameters
----------
L : array, shape (n_sensors, n_sources)
Expand Down Expand Up @@ -634,7 +655,12 @@ def gprime(w):
grp_norm2 = groups_norm2(w.copy(), n_orient)
return np.repeat(grp_norm2, n_orient).ravel() + eps

alpha_max = abs(L.T.dot(y)).max() / len(L)
if n_orient == 1:
alpha_max = abs(L.T.dot(y)).max() / len(L)
else:
n_dip_per_pos = 3
alpha_max = norm_l2inf(np.dot(L.T, y), n_dip_per_pos)

alpha = alpha * alpha_max

x = _solve_reweighted_lasso(
Expand Down Expand Up @@ -693,7 +719,12 @@ def g(w):
def gprime(w):
return 2.0 * np.repeat(g(w), n_orient).ravel()

alpha_max = abs(L.T.dot(y)).max() / len(L)
if n_orient == 1:
alpha_max = abs(L.T.dot(y)).max() / len(L)
else:
n_dip_per_pos = 3
alpha_max = norm_l2inf(np.dot(L.T, y), n_dip_per_pos)

alpha = alpha * alpha_max

x = _solve_reweighted_lasso(
Expand Down Expand Up @@ -778,7 +809,12 @@ def iterative_L1_typeII(
n_sensors, n_sources = L.shape
weights = np.ones(n_sources)

alpha_max = abs(L.T.dot(y)).max() / len(L)
if n_orient == 1:
alpha_max = abs(L.T.dot(y)).max() / len(L)
else:
n_dip_per_pos = 3
alpha_max = norm_l2inf(np.dot(L.T, y), n_dip_per_pos)

alpha = alpha * alpha_max

if isinstance(cov, float):
Expand Down Expand Up @@ -877,7 +913,12 @@ def iterative_L2_typeII(
n_sensors, n_sources = L.shape
weights = np.ones(n_sources)

alpha_max = abs(L.T.dot(y)).max() / len(L)
if n_orient == 1:
alpha_max = abs(L.T.dot(y)).max() / len(L)
else:
n_dip_per_pos = 3
alpha_max = norm_l2inf(np.dot(L.T, y), n_dip_per_pos)

alpha = alpha * alpha_max

if isinstance(cov, float):
Expand All @@ -904,7 +945,7 @@ def epsilon_update(L, weights, cov):
# w_mat(weights)
# - np.multiply(w_mat(weights ** 2), np.diag((L_T @ sigmaY_inv) @ L))
# )
return weights_ - (weights_ ** 2) * ((L_T @ sigmaY_inv) * L_T).sum(axis=1)
return weights_ - (weights_**2) * ((L_T @ sigmaY_inv) * L_T).sum(axis=1)

def g_coef(coef):
return groups_norm2(coef.copy(), n_orient)
Expand Down
Loading
Loading